Upload 7 files
Browse files- .gitignore +14 -0
- CODEOWNERS +1 -0
- LICENSE-CODE +21 -0
- README.md +253 -3
- main.py +943 -0
- pyproject.toml +48 -0
- pytest.ini +3 -0
.gitignore
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# extensions
|
2 |
+
*.egg-info
|
3 |
+
*.py[cod]
|
4 |
+
|
5 |
+
# envs
|
6 |
+
.pt13
|
7 |
+
.pt2
|
8 |
+
|
9 |
+
# directories
|
10 |
+
/checkpoints
|
11 |
+
/dist
|
12 |
+
/outputs
|
13 |
+
/build
|
14 |
+
/src
|
CODEOWNERS
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.github @Stability-AI/infrastructure
|
LICENSE-CODE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 Stability AI
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,3 +1,253 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generative Models by Stability AI
|
2 |
+
|
3 |
+
![sample1](assets/000.jpg)
|
4 |
+
|
5 |
+
## News
|
6 |
+
|
7 |
+
**July 26, 2023**
|
8 |
+
- We are releasing two new open models with a permissive [`CreativeML Open RAIL++-M` license](model_licenses/LICENSE-SDXL1.0) (see [Inference](#inference) for file hashes):
|
9 |
+
- [SDXL-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0): An improved version over `SDXL-base-0.9`.
|
10 |
+
- [SDXL-refiner-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0): An improved version over `SDXL-refiner-0.9`.
|
11 |
+
|
12 |
+
![sample2](assets/001_with_eval.png)
|
13 |
+
|
14 |
+
|
15 |
+
**July 4, 2023**
|
16 |
+
- A technical report on SDXL is now available [here](https://arxiv.org/abs/2307.01952).
|
17 |
+
|
18 |
+
**June 22, 2023**
|
19 |
+
|
20 |
+
|
21 |
+
- We are releasing two new diffusion models for research purposes:
|
22 |
+
- `SDXL-base-0.9`: The base model was trained on a variety of aspect ratios on images with resolution 1024^2. The base model uses [OpenCLIP-ViT/G](https://github.com/mlfoundations/open_clip) and [CLIP-ViT/L](https://github.com/openai/CLIP/tree/main) for text encoding whereas the refiner model only uses the OpenCLIP model.
|
23 |
+
- `SDXL-refiner-0.9`: The refiner has been trained to denoise small noise levels of high quality data and as such is not expected to work as a text-to-image model; instead, it should only be used as an image-to-image model.
|
24 |
+
|
25 |
+
If you would like to access these models for your research, please apply using one of the following links:
|
26 |
+
[SDXL-0.9-Base model](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9), and [SDXL-0.9-Refiner](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9).
|
27 |
+
This means that you can apply for any of the two links - and if you are granted - you can access both.
|
28 |
+
Please log in to your Hugging Face Account with your organization email to request access.
|
29 |
+
**We plan to do a full release soon (July).**
|
30 |
+
|
31 |
+
## The codebase
|
32 |
+
|
33 |
+
### General Philosophy
|
34 |
+
|
35 |
+
Modularity is king. This repo implements a config-driven approach where we build and combine submodules by calling `instantiate_from_config()` on objects defined in yaml configs. See `configs/` for many examples.
|
36 |
+
|
37 |
+
### Changelog from the old `ldm` codebase
|
38 |
+
|
39 |
+
For training, we use [PyTorch Lightning](https://lightning.ai/docs/pytorch/stable/), but it should be easy to use other training wrappers around the base modules. The core diffusion model class (formerly `LatentDiffusion`, now `DiffusionEngine`) has been cleaned up:
|
40 |
+
|
41 |
+
- No more extensive subclassing! We now handle all types of conditioning inputs (vectors, sequences and spatial conditionings, and all combinations thereof) in a single class: `GeneralConditioner`, see `sgm/modules/encoders/modules.py`.
|
42 |
+
- We separate guiders (such as classifier-free guidance, see `sgm/modules/diffusionmodules/guiders.py`) from the
|
43 |
+
samplers (`sgm/modules/diffusionmodules/sampling.py`), and the samplers are independent of the model.
|
44 |
+
- We adopt the ["denoiser framework"](https://arxiv.org/abs/2206.00364) for both training and inference (most notable change is probably now the option to train continuous time models):
|
45 |
+
* Discrete times models (denoisers) are simply a special case of continuous time models (denoisers); see `sgm/modules/diffusionmodules/denoiser.py`.
|
46 |
+
* The following features are now independent: weighting of the diffusion loss function (`sgm/modules/diffusionmodules/denoiser_weighting.py`), preconditioning of the network (`sgm/modules/diffusionmodules/denoiser_scaling.py`), and sampling of noise levels during training (`sgm/modules/diffusionmodules/sigma_sampling.py`).
|
47 |
+
- Autoencoding models have also been cleaned up.
|
48 |
+
|
49 |
+
## Installation:
|
50 |
+
<a name="installation"></a>
|
51 |
+
|
52 |
+
#### 1. Clone the repo
|
53 |
+
|
54 |
+
```shell
|
55 |
+
git clone git@github.com:Stability-AI/generative-models.git
|
56 |
+
cd generative-models
|
57 |
+
```
|
58 |
+
|
59 |
+
#### 2. Setting up the virtualenv
|
60 |
+
|
61 |
+
This is assuming you have navigated to the `generative-models` root after cloning it.
|
62 |
+
|
63 |
+
**NOTE:** This is tested under `python3.8` and `python3.10`. For other python versions, you might encounter version conflicts.
|
64 |
+
|
65 |
+
|
66 |
+
**PyTorch 1.13**
|
67 |
+
|
68 |
+
```shell
|
69 |
+
# install required packages from pypi
|
70 |
+
python3 -m venv .pt13
|
71 |
+
source .pt13/bin/activate
|
72 |
+
pip3 install -r requirements/pt13.txt
|
73 |
+
```
|
74 |
+
|
75 |
+
**PyTorch 2.0**
|
76 |
+
|
77 |
+
|
78 |
+
```shell
|
79 |
+
# install required packages from pypi
|
80 |
+
python3 -m venv .pt2
|
81 |
+
source .pt2/bin/activate
|
82 |
+
pip3 install -r requirements/pt2.txt
|
83 |
+
```
|
84 |
+
|
85 |
+
|
86 |
+
#### 3. Install `sgm`
|
87 |
+
|
88 |
+
```shell
|
89 |
+
pip3 install .
|
90 |
+
```
|
91 |
+
|
92 |
+
#### 4. Install `sdata` for training
|
93 |
+
|
94 |
+
```shell
|
95 |
+
pip3 install -e git+https://github.com/Stability-AI/datapipelines.git@main#egg=sdata
|
96 |
+
```
|
97 |
+
|
98 |
+
## Packaging
|
99 |
+
|
100 |
+
This repository uses PEP 517 compliant packaging using [Hatch](https://hatch.pypa.io/latest/).
|
101 |
+
|
102 |
+
To build a distributable wheel, install `hatch` and run `hatch build`
|
103 |
+
(specifying `-t wheel` will skip building a sdist, which is not necessary).
|
104 |
+
|
105 |
+
```
|
106 |
+
pip install hatch
|
107 |
+
hatch build -t wheel
|
108 |
+
```
|
109 |
+
|
110 |
+
You will find the built package in `dist/`. You can install the wheel with `pip install dist/*.whl`.
|
111 |
+
|
112 |
+
Note that the package does **not** currently specify dependencies; you will need to install the required packages,
|
113 |
+
depending on your use case and PyTorch version, manually.
|
114 |
+
|
115 |
+
## Inference
|
116 |
+
|
117 |
+
We provide a [streamlit](https://streamlit.io/) demo for text-to-image and image-to-image sampling in `scripts/demo/sampling.py`.
|
118 |
+
We provide file hashes for the complete file as well as for only the saved tensors in the file (see [Model Spec](https://github.com/Stability-AI/ModelSpec) for a script to evaluate that).
|
119 |
+
The following models are currently supported:
|
120 |
+
|
121 |
+
- [SDXL-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
122 |
+
```
|
123 |
+
File Hash (sha256): 31e35c80fc4829d14f90153f4c74cd59c90b779f6afe05a74cd6120b893f7e5b
|
124 |
+
Tensordata Hash (sha256): 0xd7a9105a900fd52748f20725fe52fe52b507fd36bee4fc107b1550a26e6ee1d7
|
125 |
+
```
|
126 |
+
- [SDXL-refiner-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0)
|
127 |
+
```
|
128 |
+
File Hash (sha256): 7440042bbdc8a24813002c09b6b69b64dc90fded4472613437b7f55f9b7d9c5f
|
129 |
+
Tensordata Hash (sha256): 0x1a77d21bebc4b4de78c474a90cb74dc0d2217caf4061971dbfa75ad406b75d81
|
130 |
+
```
|
131 |
+
- [SDXL-base-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9)
|
132 |
+
- [SDXL-refiner-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9)
|
133 |
+
- [SD-2.1-512](https://huggingface.co/stabilityai/stable-diffusion-2-1-base/blob/main/v2-1_512-ema-pruned.safetensors)
|
134 |
+
- [SD-2.1-768](https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors)
|
135 |
+
|
136 |
+
**Weights for SDXL**:
|
137 |
+
|
138 |
+
**SDXL-1.0:**
|
139 |
+
The weights of SDXL-1.0 are available (subject to a [`CreativeML Open RAIL++-M` license](model_licenses/LICENSE-SDXL1.0)) here:
|
140 |
+
- base model: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/
|
141 |
+
- refiner model: https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/
|
142 |
+
|
143 |
+
|
144 |
+
**SDXL-0.9:**
|
145 |
+
The weights of SDXL-0.9 are available and subject to a [research license](model_licenses/LICENSE-SDXL0.9).
|
146 |
+
If you would like to access these models for your research, please apply using one of the following links:
|
147 |
+
[SDXL-base-0.9 model](https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9), and [SDXL-refiner-0.9](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9).
|
148 |
+
This means that you can apply for any of the two links - and if you are granted - you can access both.
|
149 |
+
Please log in to your Hugging Face Account with your organization email to request access.
|
150 |
+
|
151 |
+
|
152 |
+
After obtaining the weights, place them into `checkpoints/`.
|
153 |
+
Next, start the demo using
|
154 |
+
|
155 |
+
```
|
156 |
+
streamlit run scripts/demo/sampling.py --server.port <your_port>
|
157 |
+
```
|
158 |
+
|
159 |
+
### Invisible Watermark Detection
|
160 |
+
|
161 |
+
Images generated with our code use the
|
162 |
+
[invisible-watermark](https://github.com/ShieldMnt/invisible-watermark/)
|
163 |
+
library to embed an invisible watermark into the model output. We also provide
|
164 |
+
a script to easily detect that watermark. Please note that this watermark is
|
165 |
+
not the same as in previous Stable Diffusion 1.x/2.x versions.
|
166 |
+
|
167 |
+
To run the script you need to either have a working installation as above or
|
168 |
+
try an _experimental_ import using only a minimal amount of packages:
|
169 |
+
```bash
|
170 |
+
python -m venv .detect
|
171 |
+
source .detect/bin/activate
|
172 |
+
|
173 |
+
pip install "numpy>=1.17" "PyWavelets>=1.1.1" "opencv-python>=4.1.0.25"
|
174 |
+
pip install --no-deps invisible-watermark
|
175 |
+
```
|
176 |
+
|
177 |
+
To run the script you need to have a working installation as above. The script
|
178 |
+
is then useable in the following ways (don't forget to activate your
|
179 |
+
virtual environment beforehand, e.g. `source .pt1/bin/activate`):
|
180 |
+
```bash
|
181 |
+
# test a single file
|
182 |
+
python scripts/demo/detect.py <your filename here>
|
183 |
+
# test multiple files at once
|
184 |
+
python scripts/demo/detect.py <filename 1> <filename 2> ... <filename n>
|
185 |
+
# test all files in a specific folder
|
186 |
+
python scripts/demo/detect.py <your folder name here>/*
|
187 |
+
```
|
188 |
+
|
189 |
+
## Training:
|
190 |
+
|
191 |
+
We are providing example training configs in `configs/example_training`. To launch a training, run
|
192 |
+
|
193 |
+
```
|
194 |
+
python main.py --base configs/<config1.yaml> configs/<config2.yaml>
|
195 |
+
```
|
196 |
+
|
197 |
+
where configs are merged from left to right (later configs overwrite the same values).
|
198 |
+
This can be used to combine model, training and data configs. However, all of them can also be
|
199 |
+
defined in a single config. For example, to run a class-conditional pixel-based diffusion model training on MNIST,
|
200 |
+
run
|
201 |
+
|
202 |
+
```bash
|
203 |
+
python main.py --base configs/example_training/toy/mnist_cond.yaml
|
204 |
+
```
|
205 |
+
|
206 |
+
**NOTE 1:** Using the non-toy-dataset configs `configs/example_training/imagenet-f8_cond.yaml`, `configs/example_training/txt2img-clipl.yaml` and `configs/example_training/txt2img-clipl-legacy-ucg-training.yaml` for training will require edits depending on the used dataset (which is expected to stored in tar-file in the [webdataset-format](https://github.com/webdataset/webdataset)). To find the parts which have to be adapted, search for comments containing `USER:` in the respective config.
|
207 |
+
|
208 |
+
**NOTE 2:** This repository supports both `pytorch1.13` and `pytorch2`for training generative models. However for autoencoder training as e.g. in `configs/example_training/autoencoder/kl-f4/imagenet-attnfree-logvar.yaml`, only `pytorch1.13` is supported.
|
209 |
+
|
210 |
+
**NOTE 3:** Training latent generative models (as e.g. in `configs/example_training/imagenet-f8_cond.yaml`) requires retrieving the checkpoint from [Hugging Face](https://huggingface.co/stabilityai/sdxl-vae/tree/main) and replacing the `CKPT_PATH` placeholder in [this line](configs/example_training/imagenet-f8_cond.yaml#81). The same is to be done for the provided text-to-image configs.
|
211 |
+
|
212 |
+
### Building New Diffusion Models
|
213 |
+
|
214 |
+
#### Conditioner
|
215 |
+
|
216 |
+
The `GeneralConditioner` is configured through the `conditioner_config`. Its only attribute is `emb_models`, a list of
|
217 |
+
different embedders (all inherited from `AbstractEmbModel`) that are used to condition the generative model.
|
218 |
+
All embedders should define whether or not they are trainable (`is_trainable`, default `False`), a classifier-free
|
219 |
+
guidance dropout rate is used (`ucg_rate`, default `0`), and an input key (`input_key`), for example, `txt` for text-conditioning or `cls` for class-conditioning.
|
220 |
+
When computing conditionings, the embedder will get `batch[input_key]` as input.
|
221 |
+
We currently support two to four dimensional conditionings and conditionings of different embedders are concatenated
|
222 |
+
appropriately.
|
223 |
+
Note that the order of the embedders in the `conditioner_config` is important.
|
224 |
+
|
225 |
+
#### Network
|
226 |
+
|
227 |
+
The neural network is set through the `network_config`. This used to be called `unet_config`, which is not general
|
228 |
+
enough as we plan to experiment with transformer-based diffusion backbones.
|
229 |
+
|
230 |
+
#### Loss
|
231 |
+
|
232 |
+
The loss is configured through `loss_config`. For standard diffusion model training, you will have to set `sigma_sampler_config`.
|
233 |
+
|
234 |
+
#### Sampler config
|
235 |
+
|
236 |
+
As discussed above, the sampler is independent of the model. In the `sampler_config`, we set the type of numerical
|
237 |
+
solver, number of steps, type of discretization, as well as, for example, guidance wrappers for classifier-free
|
238 |
+
guidance.
|
239 |
+
|
240 |
+
### Dataset Handling
|
241 |
+
|
242 |
+
|
243 |
+
For large scale training we recommend using the data pipelines from our [data pipelines](https://github.com/Stability-AI/datapipelines) project. The project is contained in the requirement and automatically included when following the steps from the [Installation section](#installation).
|
244 |
+
Small map-style datasets should be defined here in the repository (e.g., MNIST, CIFAR-10, ...), and return a dict of
|
245 |
+
data keys/values,
|
246 |
+
e.g.,
|
247 |
+
|
248 |
+
```python
|
249 |
+
example = {"jpg": x, # this is a tensor -1...1 chw
|
250 |
+
"txt": "a beautiful image"}
|
251 |
+
```
|
252 |
+
|
253 |
+
where we expect images in -1...1, channel-first format.
|
main.py
ADDED
@@ -0,0 +1,943 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import glob
|
4 |
+
import inspect
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
from inspect import Parameter
|
8 |
+
from typing import Union
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import pytorch_lightning as pl
|
12 |
+
import torch
|
13 |
+
import torchvision
|
14 |
+
import wandb
|
15 |
+
from matplotlib import pyplot as plt
|
16 |
+
from natsort import natsorted
|
17 |
+
from omegaconf import OmegaConf
|
18 |
+
from packaging import version
|
19 |
+
from PIL import Image
|
20 |
+
from pytorch_lightning import seed_everything
|
21 |
+
from pytorch_lightning.callbacks import Callback
|
22 |
+
from pytorch_lightning.loggers import WandbLogger
|
23 |
+
from pytorch_lightning.trainer import Trainer
|
24 |
+
from pytorch_lightning.utilities import rank_zero_only
|
25 |
+
|
26 |
+
from sgm.util import exists, instantiate_from_config, isheatmap
|
27 |
+
|
28 |
+
MULTINODE_HACKS = True
|
29 |
+
|
30 |
+
|
31 |
+
def default_trainer_args():
|
32 |
+
argspec = dict(inspect.signature(Trainer.__init__).parameters)
|
33 |
+
argspec.pop("self")
|
34 |
+
default_args = {
|
35 |
+
param: argspec[param].default
|
36 |
+
for param in argspec
|
37 |
+
if argspec[param] != Parameter.empty
|
38 |
+
}
|
39 |
+
return default_args
|
40 |
+
|
41 |
+
|
42 |
+
def get_parser(**parser_kwargs):
|
43 |
+
def str2bool(v):
|
44 |
+
if isinstance(v, bool):
|
45 |
+
return v
|
46 |
+
if v.lower() in ("yes", "true", "t", "y", "1"):
|
47 |
+
return True
|
48 |
+
elif v.lower() in ("no", "false", "f", "n", "0"):
|
49 |
+
return False
|
50 |
+
else:
|
51 |
+
raise argparse.ArgumentTypeError("Boolean value expected.")
|
52 |
+
|
53 |
+
parser = argparse.ArgumentParser(**parser_kwargs)
|
54 |
+
parser.add_argument(
|
55 |
+
"-n",
|
56 |
+
"--name",
|
57 |
+
type=str,
|
58 |
+
const=True,
|
59 |
+
default="",
|
60 |
+
nargs="?",
|
61 |
+
help="postfix for logdir",
|
62 |
+
)
|
63 |
+
parser.add_argument(
|
64 |
+
"--no_date",
|
65 |
+
type=str2bool,
|
66 |
+
nargs="?",
|
67 |
+
const=True,
|
68 |
+
default=False,
|
69 |
+
help="if True, skip date generation for logdir and only use naming via opt.base or opt.name (+ opt.postfix, optionally)",
|
70 |
+
)
|
71 |
+
parser.add_argument(
|
72 |
+
"-r",
|
73 |
+
"--resume",
|
74 |
+
type=str,
|
75 |
+
const=True,
|
76 |
+
default="",
|
77 |
+
nargs="?",
|
78 |
+
help="resume from logdir or checkpoint in logdir",
|
79 |
+
)
|
80 |
+
parser.add_argument(
|
81 |
+
"-b",
|
82 |
+
"--base",
|
83 |
+
nargs="*",
|
84 |
+
metavar="base_config.yaml",
|
85 |
+
help="paths to base configs. Loaded from left-to-right. "
|
86 |
+
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
|
87 |
+
default=list(),
|
88 |
+
)
|
89 |
+
parser.add_argument(
|
90 |
+
"-t",
|
91 |
+
"--train",
|
92 |
+
type=str2bool,
|
93 |
+
const=True,
|
94 |
+
default=True,
|
95 |
+
nargs="?",
|
96 |
+
help="train",
|
97 |
+
)
|
98 |
+
parser.add_argument(
|
99 |
+
"--no-test",
|
100 |
+
type=str2bool,
|
101 |
+
const=True,
|
102 |
+
default=False,
|
103 |
+
nargs="?",
|
104 |
+
help="disable test",
|
105 |
+
)
|
106 |
+
parser.add_argument(
|
107 |
+
"-p", "--project", help="name of new or path to existing project"
|
108 |
+
)
|
109 |
+
parser.add_argument(
|
110 |
+
"-d",
|
111 |
+
"--debug",
|
112 |
+
type=str2bool,
|
113 |
+
nargs="?",
|
114 |
+
const=True,
|
115 |
+
default=False,
|
116 |
+
help="enable post-mortem debugging",
|
117 |
+
)
|
118 |
+
parser.add_argument(
|
119 |
+
"-s",
|
120 |
+
"--seed",
|
121 |
+
type=int,
|
122 |
+
default=23,
|
123 |
+
help="seed for seed_everything",
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"-f",
|
127 |
+
"--postfix",
|
128 |
+
type=str,
|
129 |
+
default="",
|
130 |
+
help="post-postfix for default name",
|
131 |
+
)
|
132 |
+
parser.add_argument(
|
133 |
+
"--projectname",
|
134 |
+
type=str,
|
135 |
+
default="stablediffusion",
|
136 |
+
)
|
137 |
+
parser.add_argument(
|
138 |
+
"-l",
|
139 |
+
"--logdir",
|
140 |
+
type=str,
|
141 |
+
default="logs",
|
142 |
+
help="directory for logging dat shit",
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"--scale_lr",
|
146 |
+
type=str2bool,
|
147 |
+
nargs="?",
|
148 |
+
const=True,
|
149 |
+
default=False,
|
150 |
+
help="scale base-lr by ngpu * batch_size * n_accumulate",
|
151 |
+
)
|
152 |
+
parser.add_argument(
|
153 |
+
"--legacy_naming",
|
154 |
+
type=str2bool,
|
155 |
+
nargs="?",
|
156 |
+
const=True,
|
157 |
+
default=False,
|
158 |
+
help="name run based on config file name if true, else by whole path",
|
159 |
+
)
|
160 |
+
parser.add_argument(
|
161 |
+
"--enable_tf32",
|
162 |
+
type=str2bool,
|
163 |
+
nargs="?",
|
164 |
+
const=True,
|
165 |
+
default=False,
|
166 |
+
help="enables the TensorFloat32 format both for matmuls and cuDNN for pytorch 1.12",
|
167 |
+
)
|
168 |
+
parser.add_argument(
|
169 |
+
"--startup",
|
170 |
+
type=str,
|
171 |
+
default=None,
|
172 |
+
help="Startuptime from distributed script",
|
173 |
+
)
|
174 |
+
parser.add_argument(
|
175 |
+
"--wandb",
|
176 |
+
type=str2bool,
|
177 |
+
nargs="?",
|
178 |
+
const=True,
|
179 |
+
default=False, # TODO: later default to True
|
180 |
+
help="log to wandb",
|
181 |
+
)
|
182 |
+
parser.add_argument(
|
183 |
+
"--no_base_name",
|
184 |
+
type=str2bool,
|
185 |
+
nargs="?",
|
186 |
+
const=True,
|
187 |
+
default=False, # TODO: later default to True
|
188 |
+
help="log to wandb",
|
189 |
+
)
|
190 |
+
if version.parse(torch.__version__) >= version.parse("2.0.0"):
|
191 |
+
parser.add_argument(
|
192 |
+
"--resume_from_checkpoint",
|
193 |
+
type=str,
|
194 |
+
default=None,
|
195 |
+
help="single checkpoint file to resume from",
|
196 |
+
)
|
197 |
+
default_args = default_trainer_args()
|
198 |
+
for key in default_args:
|
199 |
+
parser.add_argument("--" + key, default=default_args[key])
|
200 |
+
return parser
|
201 |
+
|
202 |
+
|
203 |
+
def get_checkpoint_name(logdir):
|
204 |
+
ckpt = os.path.join(logdir, "checkpoints", "last**.ckpt")
|
205 |
+
ckpt = natsorted(glob.glob(ckpt))
|
206 |
+
print('available "last" checkpoints:')
|
207 |
+
print(ckpt)
|
208 |
+
if len(ckpt) > 1:
|
209 |
+
print("got most recent checkpoint")
|
210 |
+
ckpt = sorted(ckpt, key=lambda x: os.path.getmtime(x))[-1]
|
211 |
+
print(f"Most recent ckpt is {ckpt}")
|
212 |
+
with open(os.path.join(logdir, "most_recent_ckpt.txt"), "w") as f:
|
213 |
+
f.write(ckpt + "\n")
|
214 |
+
try:
|
215 |
+
version = int(ckpt.split("/")[-1].split("-v")[-1].split(".")[0])
|
216 |
+
except Exception as e:
|
217 |
+
print("version confusion but not bad")
|
218 |
+
print(e)
|
219 |
+
version = 1
|
220 |
+
# version = last_version + 1
|
221 |
+
else:
|
222 |
+
# in this case, we only have one "last.ckpt"
|
223 |
+
ckpt = ckpt[0]
|
224 |
+
version = 1
|
225 |
+
melk_ckpt_name = f"last-v{version}.ckpt"
|
226 |
+
print(f"Current melk ckpt name: {melk_ckpt_name}")
|
227 |
+
return ckpt, melk_ckpt_name
|
228 |
+
|
229 |
+
|
230 |
+
class SetupCallback(Callback):
|
231 |
+
def __init__(
|
232 |
+
self,
|
233 |
+
resume,
|
234 |
+
now,
|
235 |
+
logdir,
|
236 |
+
ckptdir,
|
237 |
+
cfgdir,
|
238 |
+
config,
|
239 |
+
lightning_config,
|
240 |
+
debug,
|
241 |
+
ckpt_name=None,
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
self.resume = resume
|
245 |
+
self.now = now
|
246 |
+
self.logdir = logdir
|
247 |
+
self.ckptdir = ckptdir
|
248 |
+
self.cfgdir = cfgdir
|
249 |
+
self.config = config
|
250 |
+
self.lightning_config = lightning_config
|
251 |
+
self.debug = debug
|
252 |
+
self.ckpt_name = ckpt_name
|
253 |
+
|
254 |
+
def on_exception(self, trainer: pl.Trainer, pl_module, exception):
|
255 |
+
if not self.debug and trainer.global_rank == 0:
|
256 |
+
print("Summoning checkpoint.")
|
257 |
+
if self.ckpt_name is None:
|
258 |
+
ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
|
259 |
+
else:
|
260 |
+
ckpt_path = os.path.join(self.ckptdir, self.ckpt_name)
|
261 |
+
trainer.save_checkpoint(ckpt_path)
|
262 |
+
|
263 |
+
def on_fit_start(self, trainer, pl_module):
|
264 |
+
if trainer.global_rank == 0:
|
265 |
+
# Create logdirs and save configs
|
266 |
+
os.makedirs(self.logdir, exist_ok=True)
|
267 |
+
os.makedirs(self.ckptdir, exist_ok=True)
|
268 |
+
os.makedirs(self.cfgdir, exist_ok=True)
|
269 |
+
|
270 |
+
if "callbacks" in self.lightning_config:
|
271 |
+
if (
|
272 |
+
"metrics_over_trainsteps_checkpoint"
|
273 |
+
in self.lightning_config["callbacks"]
|
274 |
+
):
|
275 |
+
os.makedirs(
|
276 |
+
os.path.join(self.ckptdir, "trainstep_checkpoints"),
|
277 |
+
exist_ok=True,
|
278 |
+
)
|
279 |
+
print("Project config")
|
280 |
+
print(OmegaConf.to_yaml(self.config))
|
281 |
+
if MULTINODE_HACKS:
|
282 |
+
import time
|
283 |
+
|
284 |
+
time.sleep(5)
|
285 |
+
OmegaConf.save(
|
286 |
+
self.config,
|
287 |
+
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)),
|
288 |
+
)
|
289 |
+
|
290 |
+
print("Lightning config")
|
291 |
+
print(OmegaConf.to_yaml(self.lightning_config))
|
292 |
+
OmegaConf.save(
|
293 |
+
OmegaConf.create({"lightning": self.lightning_config}),
|
294 |
+
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)),
|
295 |
+
)
|
296 |
+
|
297 |
+
else:
|
298 |
+
# ModelCheckpoint callback created log directory --- remove it
|
299 |
+
if not MULTINODE_HACKS and not self.resume and os.path.exists(self.logdir):
|
300 |
+
dst, name = os.path.split(self.logdir)
|
301 |
+
dst = os.path.join(dst, "child_runs", name)
|
302 |
+
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
303 |
+
try:
|
304 |
+
os.rename(self.logdir, dst)
|
305 |
+
except FileNotFoundError:
|
306 |
+
pass
|
307 |
+
|
308 |
+
|
309 |
+
class ImageLogger(Callback):
|
310 |
+
def __init__(
|
311 |
+
self,
|
312 |
+
batch_frequency,
|
313 |
+
max_images,
|
314 |
+
clamp=True,
|
315 |
+
increase_log_steps=True,
|
316 |
+
rescale=True,
|
317 |
+
disabled=False,
|
318 |
+
log_on_batch_idx=False,
|
319 |
+
log_first_step=False,
|
320 |
+
log_images_kwargs=None,
|
321 |
+
log_before_first_step=False,
|
322 |
+
enable_autocast=True,
|
323 |
+
):
|
324 |
+
super().__init__()
|
325 |
+
self.enable_autocast = enable_autocast
|
326 |
+
self.rescale = rescale
|
327 |
+
self.batch_freq = batch_frequency
|
328 |
+
self.max_images = max_images
|
329 |
+
self.log_steps = [2**n for n in range(int(np.log2(self.batch_freq)) + 1)]
|
330 |
+
if not increase_log_steps:
|
331 |
+
self.log_steps = [self.batch_freq]
|
332 |
+
self.clamp = clamp
|
333 |
+
self.disabled = disabled
|
334 |
+
self.log_on_batch_idx = log_on_batch_idx
|
335 |
+
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
|
336 |
+
self.log_first_step = log_first_step
|
337 |
+
self.log_before_first_step = log_before_first_step
|
338 |
+
|
339 |
+
@rank_zero_only
|
340 |
+
def log_local(
|
341 |
+
self,
|
342 |
+
save_dir,
|
343 |
+
split,
|
344 |
+
images,
|
345 |
+
global_step,
|
346 |
+
current_epoch,
|
347 |
+
batch_idx,
|
348 |
+
pl_module: Union[None, pl.LightningModule] = None,
|
349 |
+
):
|
350 |
+
root = os.path.join(save_dir, "images", split)
|
351 |
+
for k in images:
|
352 |
+
if isheatmap(images[k]):
|
353 |
+
fig, ax = plt.subplots()
|
354 |
+
ax = ax.matshow(
|
355 |
+
images[k].cpu().numpy(), cmap="hot", interpolation="lanczos"
|
356 |
+
)
|
357 |
+
plt.colorbar(ax)
|
358 |
+
plt.axis("off")
|
359 |
+
|
360 |
+
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
|
361 |
+
k, global_step, current_epoch, batch_idx
|
362 |
+
)
|
363 |
+
os.makedirs(root, exist_ok=True)
|
364 |
+
path = os.path.join(root, filename)
|
365 |
+
plt.savefig(path)
|
366 |
+
plt.close()
|
367 |
+
# TODO: support wandb
|
368 |
+
else:
|
369 |
+
grid = torchvision.utils.make_grid(images[k], nrow=4)
|
370 |
+
if self.rescale:
|
371 |
+
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
|
372 |
+
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
373 |
+
grid = grid.numpy()
|
374 |
+
grid = (grid * 255).astype(np.uint8)
|
375 |
+
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
|
376 |
+
k, global_step, current_epoch, batch_idx
|
377 |
+
)
|
378 |
+
path = os.path.join(root, filename)
|
379 |
+
os.makedirs(os.path.split(path)[0], exist_ok=True)
|
380 |
+
img = Image.fromarray(grid)
|
381 |
+
img.save(path)
|
382 |
+
if exists(pl_module):
|
383 |
+
assert isinstance(
|
384 |
+
pl_module.logger, WandbLogger
|
385 |
+
), "logger_log_image only supports WandbLogger currently"
|
386 |
+
pl_module.logger.log_image(
|
387 |
+
key=f"{split}/{k}",
|
388 |
+
images=[
|
389 |
+
img,
|
390 |
+
],
|
391 |
+
step=pl_module.global_step,
|
392 |
+
)
|
393 |
+
|
394 |
+
@rank_zero_only
|
395 |
+
def log_img(self, pl_module, batch, batch_idx, split="train"):
|
396 |
+
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
|
397 |
+
if (
|
398 |
+
self.check_frequency(check_idx)
|
399 |
+
and hasattr(pl_module, "log_images") # batch_idx % self.batch_freq == 0
|
400 |
+
and callable(pl_module.log_images)
|
401 |
+
and
|
402 |
+
# batch_idx > 5 and
|
403 |
+
self.max_images > 0
|
404 |
+
):
|
405 |
+
logger = type(pl_module.logger)
|
406 |
+
is_train = pl_module.training
|
407 |
+
if is_train:
|
408 |
+
pl_module.eval()
|
409 |
+
|
410 |
+
gpu_autocast_kwargs = {
|
411 |
+
"enabled": self.enable_autocast, # torch.is_autocast_enabled(),
|
412 |
+
"dtype": torch.get_autocast_gpu_dtype(),
|
413 |
+
"cache_enabled": torch.is_autocast_cache_enabled(),
|
414 |
+
}
|
415 |
+
with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs):
|
416 |
+
images = pl_module.log_images(
|
417 |
+
batch, split=split, **self.log_images_kwargs
|
418 |
+
)
|
419 |
+
|
420 |
+
for k in images:
|
421 |
+
N = min(images[k].shape[0], self.max_images)
|
422 |
+
if not isheatmap(images[k]):
|
423 |
+
images[k] = images[k][:N]
|
424 |
+
if isinstance(images[k], torch.Tensor):
|
425 |
+
images[k] = images[k].detach().float().cpu()
|
426 |
+
if self.clamp and not isheatmap(images[k]):
|
427 |
+
images[k] = torch.clamp(images[k], -1.0, 1.0)
|
428 |
+
|
429 |
+
self.log_local(
|
430 |
+
pl_module.logger.save_dir,
|
431 |
+
split,
|
432 |
+
images,
|
433 |
+
pl_module.global_step,
|
434 |
+
pl_module.current_epoch,
|
435 |
+
batch_idx,
|
436 |
+
pl_module=pl_module
|
437 |
+
if isinstance(pl_module.logger, WandbLogger)
|
438 |
+
else None,
|
439 |
+
)
|
440 |
+
|
441 |
+
if is_train:
|
442 |
+
pl_module.train()
|
443 |
+
|
444 |
+
def check_frequency(self, check_idx):
|
445 |
+
if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
|
446 |
+
check_idx > 0 or self.log_first_step
|
447 |
+
):
|
448 |
+
try:
|
449 |
+
self.log_steps.pop(0)
|
450 |
+
except IndexError as e:
|
451 |
+
print(e)
|
452 |
+
pass
|
453 |
+
return True
|
454 |
+
return False
|
455 |
+
|
456 |
+
@rank_zero_only
|
457 |
+
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
|
458 |
+
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
|
459 |
+
self.log_img(pl_module, batch, batch_idx, split="train")
|
460 |
+
|
461 |
+
@rank_zero_only
|
462 |
+
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
|
463 |
+
if self.log_before_first_step and pl_module.global_step == 0:
|
464 |
+
print(f"{self.__class__.__name__}: logging before training")
|
465 |
+
self.log_img(pl_module, batch, batch_idx, split="train")
|
466 |
+
|
467 |
+
@rank_zero_only
|
468 |
+
def on_validation_batch_end(
|
469 |
+
self, trainer, pl_module, outputs, batch, batch_idx, *args, **kwargs
|
470 |
+
):
|
471 |
+
if not self.disabled and pl_module.global_step > 0:
|
472 |
+
self.log_img(pl_module, batch, batch_idx, split="val")
|
473 |
+
if hasattr(pl_module, "calibrate_grad_norm"):
|
474 |
+
if (
|
475 |
+
pl_module.calibrate_grad_norm and batch_idx % 25 == 0
|
476 |
+
) and batch_idx > 0:
|
477 |
+
self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
|
478 |
+
|
479 |
+
|
480 |
+
@rank_zero_only
|
481 |
+
def init_wandb(save_dir, opt, config, group_name, name_str):
|
482 |
+
print(f"setting WANDB_DIR to {save_dir}")
|
483 |
+
os.makedirs(save_dir, exist_ok=True)
|
484 |
+
|
485 |
+
os.environ["WANDB_DIR"] = save_dir
|
486 |
+
if opt.debug:
|
487 |
+
wandb.init(project=opt.projectname, mode="offline", group=group_name)
|
488 |
+
else:
|
489 |
+
wandb.init(
|
490 |
+
project=opt.projectname,
|
491 |
+
config=config,
|
492 |
+
settings=wandb.Settings(code_dir="./sgm"),
|
493 |
+
group=group_name,
|
494 |
+
name=name_str,
|
495 |
+
)
|
496 |
+
|
497 |
+
|
498 |
+
if __name__ == "__main__":
|
499 |
+
# custom parser to specify config files, train, test and debug mode,
|
500 |
+
# postfix, resume.
|
501 |
+
# `--key value` arguments are interpreted as arguments to the trainer.
|
502 |
+
# `nested.key=value` arguments are interpreted as config parameters.
|
503 |
+
# configs are merged from left-to-right followed by command line parameters.
|
504 |
+
|
505 |
+
# model:
|
506 |
+
# base_learning_rate: float
|
507 |
+
# target: path to lightning module
|
508 |
+
# params:
|
509 |
+
# key: value
|
510 |
+
# data:
|
511 |
+
# target: main.DataModuleFromConfig
|
512 |
+
# params:
|
513 |
+
# batch_size: int
|
514 |
+
# wrap: bool
|
515 |
+
# train:
|
516 |
+
# target: path to train dataset
|
517 |
+
# params:
|
518 |
+
# key: value
|
519 |
+
# validation:
|
520 |
+
# target: path to validation dataset
|
521 |
+
# params:
|
522 |
+
# key: value
|
523 |
+
# test:
|
524 |
+
# target: path to test dataset
|
525 |
+
# params:
|
526 |
+
# key: value
|
527 |
+
# lightning: (optional, has sane defaults and can be specified on cmdline)
|
528 |
+
# trainer:
|
529 |
+
# additional arguments to trainer
|
530 |
+
# logger:
|
531 |
+
# logger to instantiate
|
532 |
+
# modelcheckpoint:
|
533 |
+
# modelcheckpoint to instantiate
|
534 |
+
# callbacks:
|
535 |
+
# callback1:
|
536 |
+
# target: importpath
|
537 |
+
# params:
|
538 |
+
# key: value
|
539 |
+
|
540 |
+
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
541 |
+
|
542 |
+
# add cwd for convenience and to make classes in this file available when
|
543 |
+
# running as `python main.py`
|
544 |
+
# (in particular `main.DataModuleFromConfig`)
|
545 |
+
sys.path.append(os.getcwd())
|
546 |
+
|
547 |
+
parser = get_parser()
|
548 |
+
|
549 |
+
opt, unknown = parser.parse_known_args()
|
550 |
+
|
551 |
+
if opt.name and opt.resume:
|
552 |
+
raise ValueError(
|
553 |
+
"-n/--name and -r/--resume cannot be specified both."
|
554 |
+
"If you want to resume training in a new log folder, "
|
555 |
+
"use -n/--name in combination with --resume_from_checkpoint"
|
556 |
+
)
|
557 |
+
melk_ckpt_name = None
|
558 |
+
name = None
|
559 |
+
if opt.resume:
|
560 |
+
if not os.path.exists(opt.resume):
|
561 |
+
raise ValueError("Cannot find {}".format(opt.resume))
|
562 |
+
if os.path.isfile(opt.resume):
|
563 |
+
paths = opt.resume.split("/")
|
564 |
+
# idx = len(paths)-paths[::-1].index("logs")+1
|
565 |
+
# logdir = "/".join(paths[:idx])
|
566 |
+
logdir = "/".join(paths[:-2])
|
567 |
+
ckpt = opt.resume
|
568 |
+
_, melk_ckpt_name = get_checkpoint_name(logdir)
|
569 |
+
else:
|
570 |
+
assert os.path.isdir(opt.resume), opt.resume
|
571 |
+
logdir = opt.resume.rstrip("/")
|
572 |
+
ckpt, melk_ckpt_name = get_checkpoint_name(logdir)
|
573 |
+
|
574 |
+
print("#" * 100)
|
575 |
+
print(f'Resuming from checkpoint "{ckpt}"')
|
576 |
+
print("#" * 100)
|
577 |
+
|
578 |
+
opt.resume_from_checkpoint = ckpt
|
579 |
+
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
|
580 |
+
opt.base = base_configs + opt.base
|
581 |
+
_tmp = logdir.split("/")
|
582 |
+
nowname = _tmp[-1]
|
583 |
+
else:
|
584 |
+
if opt.name:
|
585 |
+
name = "_" + opt.name
|
586 |
+
elif opt.base:
|
587 |
+
if opt.no_base_name:
|
588 |
+
name = ""
|
589 |
+
else:
|
590 |
+
if opt.legacy_naming:
|
591 |
+
cfg_fname = os.path.split(opt.base[0])[-1]
|
592 |
+
cfg_name = os.path.splitext(cfg_fname)[0]
|
593 |
+
else:
|
594 |
+
assert "configs" in os.path.split(opt.base[0])[0], os.path.split(
|
595 |
+
opt.base[0]
|
596 |
+
)[0]
|
597 |
+
cfg_path = os.path.split(opt.base[0])[0].split(os.sep)[
|
598 |
+
os.path.split(opt.base[0])[0].split(os.sep).index("configs")
|
599 |
+
+ 1 :
|
600 |
+
] # cut away the first one (we assert all configs are in "configs")
|
601 |
+
cfg_name = os.path.splitext(os.path.split(opt.base[0])[-1])[0]
|
602 |
+
cfg_name = "-".join(cfg_path) + f"-{cfg_name}"
|
603 |
+
name = "_" + cfg_name
|
604 |
+
else:
|
605 |
+
name = ""
|
606 |
+
if not opt.no_date:
|
607 |
+
nowname = now + name + opt.postfix
|
608 |
+
else:
|
609 |
+
nowname = name + opt.postfix
|
610 |
+
if nowname.startswith("_"):
|
611 |
+
nowname = nowname[1:]
|
612 |
+
logdir = os.path.join(opt.logdir, nowname)
|
613 |
+
print(f"LOGDIR: {logdir}")
|
614 |
+
|
615 |
+
ckptdir = os.path.join(logdir, "checkpoints")
|
616 |
+
cfgdir = os.path.join(logdir, "configs")
|
617 |
+
seed_everything(opt.seed, workers=True)
|
618 |
+
|
619 |
+
# move before model init, in case a torch.compile(...) is called somewhere
|
620 |
+
if opt.enable_tf32:
|
621 |
+
# pt_version = version.parse(torch.__version__)
|
622 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
623 |
+
torch.backends.cudnn.allow_tf32 = True
|
624 |
+
print(f"Enabling TF32 for PyTorch {torch.__version__}")
|
625 |
+
else:
|
626 |
+
print(f"Using default TF32 settings for PyTorch {torch.__version__}:")
|
627 |
+
print(
|
628 |
+
f"torch.backends.cuda.matmul.allow_tf32={torch.backends.cuda.matmul.allow_tf32}"
|
629 |
+
)
|
630 |
+
print(f"torch.backends.cudnn.allow_tf32={torch.backends.cudnn.allow_tf32}")
|
631 |
+
|
632 |
+
try:
|
633 |
+
# init and save configs
|
634 |
+
configs = [OmegaConf.load(cfg) for cfg in opt.base]
|
635 |
+
cli = OmegaConf.from_dotlist(unknown)
|
636 |
+
config = OmegaConf.merge(*configs, cli)
|
637 |
+
lightning_config = config.pop("lightning", OmegaConf.create())
|
638 |
+
# merge trainer cli with config
|
639 |
+
trainer_config = lightning_config.get("trainer", OmegaConf.create())
|
640 |
+
|
641 |
+
# default to gpu
|
642 |
+
trainer_config["accelerator"] = "gpu"
|
643 |
+
#
|
644 |
+
standard_args = default_trainer_args()
|
645 |
+
for k in standard_args:
|
646 |
+
if getattr(opt, k) != standard_args[k]:
|
647 |
+
trainer_config[k] = getattr(opt, k)
|
648 |
+
|
649 |
+
ckpt_resume_path = opt.resume_from_checkpoint
|
650 |
+
|
651 |
+
if not "devices" in trainer_config and trainer_config["accelerator"] != "gpu":
|
652 |
+
del trainer_config["accelerator"]
|
653 |
+
cpu = True
|
654 |
+
else:
|
655 |
+
gpuinfo = trainer_config["devices"]
|
656 |
+
print(f"Running on GPUs {gpuinfo}")
|
657 |
+
cpu = False
|
658 |
+
trainer_opt = argparse.Namespace(**trainer_config)
|
659 |
+
lightning_config.trainer = trainer_config
|
660 |
+
|
661 |
+
# model
|
662 |
+
model = instantiate_from_config(config.model)
|
663 |
+
|
664 |
+
# trainer and callbacks
|
665 |
+
trainer_kwargs = dict()
|
666 |
+
|
667 |
+
# default logger configs
|
668 |
+
default_logger_cfgs = {
|
669 |
+
"wandb": {
|
670 |
+
"target": "pytorch_lightning.loggers.WandbLogger",
|
671 |
+
"params": {
|
672 |
+
"name": nowname,
|
673 |
+
# "save_dir": logdir,
|
674 |
+
"offline": opt.debug,
|
675 |
+
"id": nowname,
|
676 |
+
"project": opt.projectname,
|
677 |
+
"log_model": False,
|
678 |
+
# "dir": logdir,
|
679 |
+
},
|
680 |
+
},
|
681 |
+
"csv": {
|
682 |
+
"target": "pytorch_lightning.loggers.CSVLogger",
|
683 |
+
"params": {
|
684 |
+
"name": "testtube", # hack for sbord fanatics
|
685 |
+
"save_dir": logdir,
|
686 |
+
},
|
687 |
+
},
|
688 |
+
}
|
689 |
+
default_logger_cfg = default_logger_cfgs["wandb" if opt.wandb else "csv"]
|
690 |
+
if opt.wandb:
|
691 |
+
# TODO change once leaving "swiffer" config directory
|
692 |
+
try:
|
693 |
+
group_name = nowname.split(now)[-1].split("-")[1]
|
694 |
+
except:
|
695 |
+
group_name = nowname
|
696 |
+
default_logger_cfg["params"]["group"] = group_name
|
697 |
+
init_wandb(
|
698 |
+
os.path.join(os.getcwd(), logdir),
|
699 |
+
opt=opt,
|
700 |
+
group_name=group_name,
|
701 |
+
config=config,
|
702 |
+
name_str=nowname,
|
703 |
+
)
|
704 |
+
if "logger" in lightning_config:
|
705 |
+
logger_cfg = lightning_config.logger
|
706 |
+
else:
|
707 |
+
logger_cfg = OmegaConf.create()
|
708 |
+
logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
|
709 |
+
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
|
710 |
+
|
711 |
+
# modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
|
712 |
+
# specify which metric is used to determine best models
|
713 |
+
default_modelckpt_cfg = {
|
714 |
+
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
|
715 |
+
"params": {
|
716 |
+
"dirpath": ckptdir,
|
717 |
+
"filename": "{epoch:06}",
|
718 |
+
"verbose": True,
|
719 |
+
"save_last": True,
|
720 |
+
},
|
721 |
+
}
|
722 |
+
if hasattr(model, "monitor"):
|
723 |
+
print(f"Monitoring {model.monitor} as checkpoint metric.")
|
724 |
+
default_modelckpt_cfg["params"]["monitor"] = model.monitor
|
725 |
+
default_modelckpt_cfg["params"]["save_top_k"] = 3
|
726 |
+
|
727 |
+
if "modelcheckpoint" in lightning_config:
|
728 |
+
modelckpt_cfg = lightning_config.modelcheckpoint
|
729 |
+
else:
|
730 |
+
modelckpt_cfg = OmegaConf.create()
|
731 |
+
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
|
732 |
+
print(f"Merged modelckpt-cfg: \n{modelckpt_cfg}")
|
733 |
+
|
734 |
+
# https://pytorch-lightning.readthedocs.io/en/stable/extensions/strategy.html
|
735 |
+
# default to ddp if not further specified
|
736 |
+
default_strategy_config = {"target": "pytorch_lightning.strategies.DDPStrategy"}
|
737 |
+
|
738 |
+
if "strategy" in lightning_config:
|
739 |
+
strategy_cfg = lightning_config.strategy
|
740 |
+
else:
|
741 |
+
strategy_cfg = OmegaConf.create()
|
742 |
+
default_strategy_config["params"] = {
|
743 |
+
"find_unused_parameters": False,
|
744 |
+
# "static_graph": True,
|
745 |
+
# "ddp_comm_hook": default.fp16_compress_hook # TODO: experiment with this, also for DDPSharded
|
746 |
+
}
|
747 |
+
strategy_cfg = OmegaConf.merge(default_strategy_config, strategy_cfg)
|
748 |
+
print(
|
749 |
+
f"strategy config: \n ++++++++++++++ \n {strategy_cfg} \n ++++++++++++++ "
|
750 |
+
)
|
751 |
+
trainer_kwargs["strategy"] = instantiate_from_config(strategy_cfg)
|
752 |
+
|
753 |
+
# add callback which sets up log directory
|
754 |
+
default_callbacks_cfg = {
|
755 |
+
"setup_callback": {
|
756 |
+
"target": "main.SetupCallback",
|
757 |
+
"params": {
|
758 |
+
"resume": opt.resume,
|
759 |
+
"now": now,
|
760 |
+
"logdir": logdir,
|
761 |
+
"ckptdir": ckptdir,
|
762 |
+
"cfgdir": cfgdir,
|
763 |
+
"config": config,
|
764 |
+
"lightning_config": lightning_config,
|
765 |
+
"debug": opt.debug,
|
766 |
+
"ckpt_name": melk_ckpt_name,
|
767 |
+
},
|
768 |
+
},
|
769 |
+
"image_logger": {
|
770 |
+
"target": "main.ImageLogger",
|
771 |
+
"params": {"batch_frequency": 1000, "max_images": 4, "clamp": True},
|
772 |
+
},
|
773 |
+
"learning_rate_logger": {
|
774 |
+
"target": "pytorch_lightning.callbacks.LearningRateMonitor",
|
775 |
+
"params": {
|
776 |
+
"logging_interval": "step",
|
777 |
+
# "log_momentum": True
|
778 |
+
},
|
779 |
+
},
|
780 |
+
}
|
781 |
+
if version.parse(pl.__version__) >= version.parse("1.4.0"):
|
782 |
+
default_callbacks_cfg.update({"checkpoint_callback": modelckpt_cfg})
|
783 |
+
|
784 |
+
if "callbacks" in lightning_config:
|
785 |
+
callbacks_cfg = lightning_config.callbacks
|
786 |
+
else:
|
787 |
+
callbacks_cfg = OmegaConf.create()
|
788 |
+
|
789 |
+
if "metrics_over_trainsteps_checkpoint" in callbacks_cfg:
|
790 |
+
print(
|
791 |
+
"Caution: Saving checkpoints every n train steps without deleting. This might require some free space."
|
792 |
+
)
|
793 |
+
default_metrics_over_trainsteps_ckpt_dict = {
|
794 |
+
"metrics_over_trainsteps_checkpoint": {
|
795 |
+
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
|
796 |
+
"params": {
|
797 |
+
"dirpath": os.path.join(ckptdir, "trainstep_checkpoints"),
|
798 |
+
"filename": "{epoch:06}-{step:09}",
|
799 |
+
"verbose": True,
|
800 |
+
"save_top_k": -1,
|
801 |
+
"every_n_train_steps": 10000,
|
802 |
+
"save_weights_only": True,
|
803 |
+
},
|
804 |
+
}
|
805 |
+
}
|
806 |
+
default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict)
|
807 |
+
|
808 |
+
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
|
809 |
+
if "ignore_keys_callback" in callbacks_cfg and ckpt_resume_path is not None:
|
810 |
+
callbacks_cfg.ignore_keys_callback.params["ckpt_path"] = ckpt_resume_path
|
811 |
+
elif "ignore_keys_callback" in callbacks_cfg:
|
812 |
+
del callbacks_cfg["ignore_keys_callback"]
|
813 |
+
|
814 |
+
trainer_kwargs["callbacks"] = [
|
815 |
+
instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg
|
816 |
+
]
|
817 |
+
if not "plugins" in trainer_kwargs:
|
818 |
+
trainer_kwargs["plugins"] = list()
|
819 |
+
|
820 |
+
# cmd line trainer args (which are in trainer_opt) have always priority over config-trainer-args (which are in trainer_kwargs)
|
821 |
+
trainer_opt = vars(trainer_opt)
|
822 |
+
trainer_kwargs = {
|
823 |
+
key: val for key, val in trainer_kwargs.items() if key not in trainer_opt
|
824 |
+
}
|
825 |
+
trainer = Trainer(**trainer_opt, **trainer_kwargs)
|
826 |
+
|
827 |
+
trainer.logdir = logdir ###
|
828 |
+
|
829 |
+
# data
|
830 |
+
data = instantiate_from_config(config.data)
|
831 |
+
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
|
832 |
+
# calling these ourselves should not be necessary but it is.
|
833 |
+
# lightning still takes care of proper multiprocessing though
|
834 |
+
data.prepare_data()
|
835 |
+
# data.setup()
|
836 |
+
print("#### Data #####")
|
837 |
+
try:
|
838 |
+
for k in data.datasets:
|
839 |
+
print(
|
840 |
+
f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}"
|
841 |
+
)
|
842 |
+
except:
|
843 |
+
print("datasets not yet initialized.")
|
844 |
+
|
845 |
+
# configure learning rate
|
846 |
+
if "batch_size" in config.data.params:
|
847 |
+
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
|
848 |
+
else:
|
849 |
+
bs, base_lr = (
|
850 |
+
config.data.params.train.loader.batch_size,
|
851 |
+
config.model.base_learning_rate,
|
852 |
+
)
|
853 |
+
if not cpu:
|
854 |
+
ngpu = len(lightning_config.trainer.devices.strip(",").split(","))
|
855 |
+
else:
|
856 |
+
ngpu = 1
|
857 |
+
if "accumulate_grad_batches" in lightning_config.trainer:
|
858 |
+
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
|
859 |
+
else:
|
860 |
+
accumulate_grad_batches = 1
|
861 |
+
print(f"accumulate_grad_batches = {accumulate_grad_batches}")
|
862 |
+
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
|
863 |
+
if opt.scale_lr:
|
864 |
+
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
|
865 |
+
print(
|
866 |
+
"Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
|
867 |
+
model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr
|
868 |
+
)
|
869 |
+
)
|
870 |
+
else:
|
871 |
+
model.learning_rate = base_lr
|
872 |
+
print("++++ NOT USING LR SCALING ++++")
|
873 |
+
print(f"Setting learning rate to {model.learning_rate:.2e}")
|
874 |
+
|
875 |
+
# allow checkpointing via USR1
|
876 |
+
def melk(*args, **kwargs):
|
877 |
+
# run all checkpoint hooks
|
878 |
+
if trainer.global_rank == 0:
|
879 |
+
print("Summoning checkpoint.")
|
880 |
+
if melk_ckpt_name is None:
|
881 |
+
ckpt_path = os.path.join(ckptdir, "last.ckpt")
|
882 |
+
else:
|
883 |
+
ckpt_path = os.path.join(ckptdir, melk_ckpt_name)
|
884 |
+
trainer.save_checkpoint(ckpt_path)
|
885 |
+
|
886 |
+
def divein(*args, **kwargs):
|
887 |
+
if trainer.global_rank == 0:
|
888 |
+
import pudb
|
889 |
+
|
890 |
+
pudb.set_trace()
|
891 |
+
|
892 |
+
import signal
|
893 |
+
|
894 |
+
signal.signal(signal.SIGUSR1, melk)
|
895 |
+
signal.signal(signal.SIGUSR2, divein)
|
896 |
+
|
897 |
+
# run
|
898 |
+
if opt.train:
|
899 |
+
try:
|
900 |
+
trainer.fit(model, data, ckpt_path=ckpt_resume_path)
|
901 |
+
except Exception:
|
902 |
+
if not opt.debug:
|
903 |
+
melk()
|
904 |
+
raise
|
905 |
+
if not opt.no_test and not trainer.interrupted:
|
906 |
+
trainer.test(model, data)
|
907 |
+
except RuntimeError as err:
|
908 |
+
if MULTINODE_HACKS:
|
909 |
+
import datetime
|
910 |
+
import os
|
911 |
+
import socket
|
912 |
+
|
913 |
+
import requests
|
914 |
+
|
915 |
+
device = os.environ.get("CUDA_VISIBLE_DEVICES", "?")
|
916 |
+
hostname = socket.gethostname()
|
917 |
+
ts = datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
|
918 |
+
resp = requests.get("http://169.254.169.254/latest/meta-data/instance-id")
|
919 |
+
print(
|
920 |
+
f"ERROR at {ts} on {hostname}/{resp.text} (CUDA_VISIBLE_DEVICES={device}): {type(err).__name__}: {err}",
|
921 |
+
flush=True,
|
922 |
+
)
|
923 |
+
raise err
|
924 |
+
except Exception:
|
925 |
+
if opt.debug and trainer.global_rank == 0:
|
926 |
+
try:
|
927 |
+
import pudb as debugger
|
928 |
+
except ImportError:
|
929 |
+
import pdb as debugger
|
930 |
+
debugger.post_mortem()
|
931 |
+
raise
|
932 |
+
finally:
|
933 |
+
# move newly created debug project to debug_runs
|
934 |
+
if opt.debug and not opt.resume and trainer.global_rank == 0:
|
935 |
+
dst, name = os.path.split(logdir)
|
936 |
+
dst = os.path.join(dst, "debug_runs", name)
|
937 |
+
os.makedirs(os.path.split(dst)[0], exist_ok=True)
|
938 |
+
os.rename(logdir, dst)
|
939 |
+
|
940 |
+
if opt.wandb:
|
941 |
+
wandb.finish()
|
942 |
+
# if trainer.global_rank == 0:
|
943 |
+
# print(trainer.profiler.summary())
|
pyproject.toml
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["hatchling"]
|
3 |
+
build-backend = "hatchling.build"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "sgm"
|
7 |
+
dynamic = ["version"]
|
8 |
+
description = "Stability Generative Models"
|
9 |
+
readme = "README.md"
|
10 |
+
license-files = { paths = ["LICENSE-CODE"] }
|
11 |
+
requires-python = ">=3.8"
|
12 |
+
|
13 |
+
[project.urls]
|
14 |
+
Homepage = "https://github.com/Stability-AI/generative-models"
|
15 |
+
|
16 |
+
[tool.hatch.version]
|
17 |
+
path = "sgm/__init__.py"
|
18 |
+
|
19 |
+
[tool.hatch.build]
|
20 |
+
# This needs to be explicitly set so the configuration files
|
21 |
+
# grafted into the `sgm` directory get included in the wheel's
|
22 |
+
# RECORD file.
|
23 |
+
include = [
|
24 |
+
"sgm",
|
25 |
+
]
|
26 |
+
# The force-include configurations below make Hatch copy
|
27 |
+
# the configs/ directory (containing the various YAML files required
|
28 |
+
# to generatively model) into the source distribution and the wheel.
|
29 |
+
|
30 |
+
[tool.hatch.build.targets.sdist.force-include]
|
31 |
+
"./configs" = "sgm/configs"
|
32 |
+
|
33 |
+
[tool.hatch.build.targets.wheel.force-include]
|
34 |
+
"./configs" = "sgm/configs"
|
35 |
+
|
36 |
+
[tool.hatch.envs.ci]
|
37 |
+
skip-install = false
|
38 |
+
|
39 |
+
dependencies = [
|
40 |
+
"pytest"
|
41 |
+
]
|
42 |
+
|
43 |
+
[tool.hatch.envs.ci.scripts]
|
44 |
+
test-inference = [
|
45 |
+
"pip install torch==2.0.1+cu118 torchvision==0.15.2+cu118 torchaudio==2.0.2+cu118 --index-url https://download.pytorch.org/whl/cu118",
|
46 |
+
"pip install -r requirements/pt2.txt",
|
47 |
+
"pytest -v tests/inference/test_inference.py {args}",
|
48 |
+
]
|
pytest.ini
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[pytest]
|
2 |
+
markers =
|
3 |
+
inference: mark as inference test (deselect with '-m "not inference"')
|