Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- text-generation-inference
|
6 |
+
---
|
7 |
+
|
8 |
+
# Model Card for Mistral-7B for Story Generation
|
9 |
+
|
10 |
+
### Model Description
|
11 |
+
|
12 |
+
<!-- Provide a longer summary of what this model is. -->
|
13 |
+
|
14 |
+
This model is a fine-tuned **Mistral-7B** model on stories from the [WritingPrompts dataset](https://huggingface.co/datasets/euclaise/writingprompts).
|
15 |
+
|
16 |
+
- **Language(s) (NLP):** English
|
17 |
+
- **Finetuned from model:** [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
18 |
+
- **Dataset used for fine-tuning:** [WritingPrompts](https://huggingface.co/datasets/euclaise/writingprompts)
|
19 |
+
|
20 |
+
|
21 |
+
### Example of Usage
|
22 |
+
|
23 |
+
```python
|
24 |
+
import torch
|
25 |
+
|
26 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
27 |
+
from transformers.trainer_utils import set_seed
|
28 |
+
|
29 |
+
set_seed(42)
|
30 |
+
|
31 |
+
model_id = "m-elio/Mistral-Writing-Prompts"
|
32 |
+
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
34 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
35 |
+
|
36 |
+
instruction_text = "Write a story for the writing prompt provided as input"
|
37 |
+
input_text = "A story about a dancer who tries to win the National championship."
|
38 |
+
|
39 |
+
prompt = "Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n" \
|
40 |
+
f"### Instruction:\nWrite a story for the writing prompt provided as input\n\n" \
|
41 |
+
f"### Input:\n{input_text}\n\n" \
|
42 |
+
f"### Answer:\n"
|
43 |
+
|
44 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
45 |
+
outputs = model.generate(input_ids=input_ids, top_k=0, top_p=0.92, do_sample=True, max_new_tokens=2048)
|
46 |
+
|
47 |
+
print(tokenizer.batch_decode(outputs.detach().cpu().numpy()[:, input_ids.shape[1]:], skip_special_tokens=True)[0])
|
48 |
+
```
|
49 |
+
|