lzq49 commited on
Commit
5d21eef
1 Parent(s): 7b693b2

Upload unet.py

Browse files
Files changed (1) hide show
  1. unet/unet.py +1177 -0
unet/unet.py ADDED
@@ -0,0 +1,1177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from typing import Any, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+ import torch.utils.checkpoint
20
+
21
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
22
+ from diffusers.loaders import UNet2DConditionLoadersMixin
23
+ from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
24
+ from diffusers.models.activations import get_activation
25
+ from diffusers.models.attention_processor import (
26
+ ADDED_KV_ATTENTION_PROCESSORS,
27
+ CROSS_ATTENTION_PROCESSORS,
28
+ AttentionProcessor,
29
+ AttnAddedKVProcessor,
30
+ AttnProcessor,
31
+ )
32
+ from diffusers.models.embeddings import (
33
+ GaussianFourierProjection,
34
+ ImageHintTimeEmbedding,
35
+ ImageProjection,
36
+ ImageTimeEmbedding,
37
+ PositionNet,
38
+ TextImageProjection,
39
+ TextImageTimeEmbedding,
40
+ TextTimeEmbedding,
41
+ TimestepEmbedding,
42
+ Timesteps,
43
+ )
44
+ from diffusers.models.modeling_utils import ModelMixin
45
+ from diffusers.models.unet_2d_blocks import (
46
+ UNetMidBlock2D,
47
+ UNetMidBlock2DCrossAttn,
48
+ UNetMidBlock2DSimpleCrossAttn,
49
+ get_down_block,
50
+ get_up_block,
51
+ )
52
+
53
+
54
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
55
+
56
+
57
+ @dataclass
58
+ class UNet2DConditionOutput(BaseOutput):
59
+ """
60
+ The output of [`UNet2DConditionModel`].
61
+
62
+ Args:
63
+ sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
64
+ The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
65
+ """
66
+
67
+ sample: torch.FloatTensor = None
68
+
69
+
70
+ class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
71
+ r"""
72
+ A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
73
+ shaped output.
74
+
75
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
76
+ for all models (such as downloading or saving).
77
+
78
+ Parameters:
79
+ sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
80
+ Height and width of input/output sample.
81
+ in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
82
+ out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
83
+ center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
84
+ flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
85
+ Whether to flip the sin to cos in the time embedding.
86
+ freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
87
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
88
+ The tuple of downsample blocks to use.
89
+ mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
90
+ Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
91
+ `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
92
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
93
+ The tuple of upsample blocks to use.
94
+ only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
95
+ Whether to include self-attention in the basic transformer blocks, see
96
+ [`~models.attention.BasicTransformerBlock`].
97
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
98
+ The tuple of output channels for each block.
99
+ layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
100
+ downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
101
+ mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
102
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
103
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
104
+ norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
105
+ If `None`, normalization and activation layers is skipped in post-processing.
106
+ norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
107
+ cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
108
+ The dimension of the cross attention features.
109
+ transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
110
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
111
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
112
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
113
+ reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
114
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
115
+ blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
116
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
117
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
118
+ encoder_hid_dim (`int`, *optional*, defaults to None):
119
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
120
+ dimension to `cross_attention_dim`.
121
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
122
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
123
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
124
+ attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
125
+ num_attention_heads (`int`, *optional*):
126
+ The number of attention heads. If not defined, defaults to `attention_head_dim`
127
+ resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
128
+ for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
129
+ class_embed_type (`str`, *optional*, defaults to `None`):
130
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
131
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
132
+ addition_embed_type (`str`, *optional*, defaults to `None`):
133
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
134
+ "text". "text" will use the `TextTimeEmbedding` layer.
135
+ addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
136
+ Dimension for the timestep embeddings.
137
+ num_class_embeds (`int`, *optional*, defaults to `None`):
138
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
139
+ class conditioning with `class_embed_type` equal to `None`.
140
+ time_embedding_type (`str`, *optional*, defaults to `positional`):
141
+ The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
142
+ time_embedding_dim (`int`, *optional*, defaults to `None`):
143
+ An optional override for the dimension of the projected time embedding.
144
+ time_embedding_act_fn (`str`, *optional*, defaults to `None`):
145
+ Optional activation function to use only once on the time embeddings before they are passed to the rest of
146
+ the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
147
+ timestep_post_act (`str`, *optional*, defaults to `None`):
148
+ The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
149
+ time_cond_proj_dim (`int`, *optional*, defaults to `None`):
150
+ The dimension of `cond_proj` layer in the timestep embedding.
151
+ conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
152
+ *optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
153
+ *optional*): The dimension of the `class_labels` input when
154
+ `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
155
+ class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
156
+ embeddings with the class embeddings.
157
+ mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
158
+ Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
159
+ `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
160
+ `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
161
+ otherwise.
162
+ """
163
+
164
+ _supports_gradient_checkpointing = True
165
+
166
+ @register_to_config
167
+ def __init__(
168
+ self,
169
+ sample_size: Optional[int] = None,
170
+ in_channels: int = 4,
171
+ out_channels: int = 4,
172
+ center_input_sample: bool = False,
173
+ flip_sin_to_cos: bool = True,
174
+ freq_shift: int = 0,
175
+ down_block_types: Tuple[str] = (
176
+ "CrossAttnDownBlock2D",
177
+ "CrossAttnDownBlock2D",
178
+ "CrossAttnDownBlock2D",
179
+ "DownBlock2D",
180
+ ),
181
+ mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
182
+ up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
183
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
184
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
185
+ layers_per_block: Union[int, Tuple[int]] = 2,
186
+ downsample_padding: int = 1,
187
+ mid_block_scale_factor: float = 1,
188
+ dropout: float = 0.0,
189
+ act_fn: str = "silu",
190
+ norm_num_groups: Optional[int] = 32,
191
+ norm_eps: float = 1e-5,
192
+ cross_attention_dim: Union[int, Tuple[int]] = 1280,
193
+ transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
194
+ reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
195
+ encoder_hid_dim: Optional[int] = None,
196
+ encoder_hid_dim_type: Optional[str] = None,
197
+ attention_head_dim: Union[int, Tuple[int]] = 8,
198
+ num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
199
+ dual_cross_attention: bool = False,
200
+ use_linear_projection: bool = False,
201
+ class_embed_type: Optional[str] = None,
202
+ addition_embed_type: Optional[str] = None,
203
+ addition_time_embed_dim: Optional[int] = None,
204
+ num_class_embeds: Optional[int] = None,
205
+ upcast_attention: bool = False,
206
+ resnet_time_scale_shift: str = "default",
207
+ resnet_skip_time_act: bool = False,
208
+ resnet_out_scale_factor: int = 1.0,
209
+ time_embedding_type: str = "positional",
210
+ time_embedding_dim: Optional[int] = None,
211
+ time_embedding_act_fn: Optional[str] = None,
212
+ timestep_post_act: Optional[str] = None,
213
+ time_cond_proj_dim: Optional[int] = None,
214
+ conv_in_kernel: int = 3,
215
+ conv_out_kernel: int = 3,
216
+ projection_class_embeddings_input_dim: Optional[int] = None,
217
+ attention_type: str = "default",
218
+ class_embeddings_concat: bool = False,
219
+ mid_block_only_cross_attention: Optional[bool] = None,
220
+ cross_attention_norm: Optional[str] = None,
221
+ addition_embed_type_num_heads=64,
222
+ ):
223
+ super().__init__()
224
+
225
+ self.sample_size = sample_size
226
+
227
+ if num_attention_heads is not None:
228
+ raise ValueError(
229
+ "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
230
+ )
231
+
232
+ # If `num_attention_heads` is not defined (which is the case for most models)
233
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
234
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
235
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
236
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
237
+ # which is why we correct for the naming here.
238
+ num_attention_heads = num_attention_heads or attention_head_dim
239
+
240
+ # Check inputs
241
+ if len(down_block_types) != len(up_block_types):
242
+ raise ValueError(
243
+ f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
244
+ )
245
+
246
+ if len(block_out_channels) != len(down_block_types):
247
+ raise ValueError(
248
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
249
+ )
250
+
251
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
252
+ raise ValueError(
253
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
254
+ )
255
+
256
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
257
+ raise ValueError(
258
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
259
+ )
260
+
261
+ if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
262
+ raise ValueError(
263
+ f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
264
+ )
265
+
266
+ if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
267
+ raise ValueError(
268
+ f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
269
+ )
270
+
271
+ if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
272
+ raise ValueError(
273
+ f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
274
+ )
275
+ if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
276
+ for layer_number_per_block in transformer_layers_per_block:
277
+ if isinstance(layer_number_per_block, list):
278
+ raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
279
+
280
+ # input
281
+ conv_in_padding = (conv_in_kernel - 1) // 2
282
+ self.conv_in = nn.Conv2d(
283
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
284
+ )
285
+
286
+ # time
287
+ if time_embedding_type == "fourier":
288
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
289
+ if time_embed_dim % 2 != 0:
290
+ raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
291
+ self.time_proj = GaussianFourierProjection(
292
+ time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
293
+ )
294
+ timestep_input_dim = time_embed_dim
295
+ elif time_embedding_type == "positional":
296
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
297
+
298
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
299
+ timestep_input_dim = block_out_channels[0]
300
+ else:
301
+ raise ValueError(
302
+ f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
303
+ )
304
+
305
+ self.time_embedding = TimestepEmbedding(
306
+ timestep_input_dim,
307
+ time_embed_dim,
308
+ act_fn=act_fn,
309
+ post_act_fn=timestep_post_act,
310
+ cond_proj_dim=time_cond_proj_dim,
311
+ )
312
+
313
+ if encoder_hid_dim_type is None and encoder_hid_dim is not None:
314
+ encoder_hid_dim_type = "text_proj"
315
+ self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
316
+ logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
317
+
318
+ if encoder_hid_dim is None and encoder_hid_dim_type is not None:
319
+ raise ValueError(
320
+ f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
321
+ )
322
+
323
+ if encoder_hid_dim_type == "text_proj":
324
+ self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
325
+ elif encoder_hid_dim_type == "text_image_proj":
326
+ # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
327
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
328
+ # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
329
+ self.encoder_hid_proj = TextImageProjection(
330
+ text_embed_dim=encoder_hid_dim,
331
+ image_embed_dim=cross_attention_dim,
332
+ cross_attention_dim=cross_attention_dim,
333
+ )
334
+ elif encoder_hid_dim_type == "image_proj":
335
+ # Kandinsky 2.2
336
+ self.encoder_hid_proj = ImageProjection(
337
+ image_embed_dim=encoder_hid_dim,
338
+ cross_attention_dim=cross_attention_dim,
339
+ )
340
+ elif encoder_hid_dim_type is not None:
341
+ raise ValueError(
342
+ f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
343
+ )
344
+ else:
345
+ self.encoder_hid_proj = None
346
+
347
+ # class embedding
348
+ if class_embed_type is None and num_class_embeds is not None:
349
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
350
+ elif class_embed_type == "timestep":
351
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
352
+ elif class_embed_type == "identity":
353
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
354
+ elif class_embed_type == "projection":
355
+ if projection_class_embeddings_input_dim is None:
356
+ raise ValueError(
357
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
358
+ )
359
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
360
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
361
+ # 2. it projects from an arbitrary input dimension.
362
+ #
363
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
364
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
365
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
366
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
367
+ elif class_embed_type == "simple_projection":
368
+ if projection_class_embeddings_input_dim is None:
369
+ raise ValueError(
370
+ "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
371
+ )
372
+ self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
373
+ else:
374
+ self.class_embedding = None
375
+
376
+ if addition_embed_type == "text":
377
+ if encoder_hid_dim is not None:
378
+ text_time_embedding_from_dim = encoder_hid_dim
379
+ else:
380
+ text_time_embedding_from_dim = cross_attention_dim
381
+
382
+ self.add_embedding = TextTimeEmbedding(
383
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
384
+ )
385
+ elif addition_embed_type == "text_image":
386
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
387
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
388
+ # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
389
+ self.add_embedding = TextImageTimeEmbedding(
390
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
391
+ )
392
+ elif addition_embed_type == "text_time":
393
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
394
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
395
+ elif addition_embed_type == "image":
396
+ # Kandinsky 2.2
397
+ self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
398
+ elif addition_embed_type == "image_hint":
399
+ # Kandinsky 2.2 ControlNet
400
+ self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
401
+ elif addition_embed_type is not None:
402
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
403
+
404
+ if time_embedding_act_fn is None:
405
+ self.time_embed_act = None
406
+ else:
407
+ self.time_embed_act = get_activation(time_embedding_act_fn)
408
+
409
+ self.down_blocks = nn.ModuleList([])
410
+ self.up_blocks = nn.ModuleList([])
411
+
412
+ if isinstance(only_cross_attention, bool):
413
+ if mid_block_only_cross_attention is None:
414
+ mid_block_only_cross_attention = only_cross_attention
415
+
416
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
417
+
418
+ if mid_block_only_cross_attention is None:
419
+ mid_block_only_cross_attention = False
420
+
421
+ if isinstance(num_attention_heads, int):
422
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
423
+
424
+ if isinstance(attention_head_dim, int):
425
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
426
+
427
+ if isinstance(cross_attention_dim, int):
428
+ cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
429
+
430
+ if isinstance(layers_per_block, int):
431
+ layers_per_block = [layers_per_block] * len(down_block_types)
432
+
433
+ if isinstance(transformer_layers_per_block, int):
434
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
435
+
436
+ if class_embeddings_concat:
437
+ # The time embeddings are concatenated with the class embeddings. The dimension of the
438
+ # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
439
+ # regular time embeddings
440
+ blocks_time_embed_dim = time_embed_dim * 2
441
+ else:
442
+ blocks_time_embed_dim = time_embed_dim
443
+
444
+ # down
445
+ output_channel = block_out_channels[0]
446
+ for i, down_block_type in enumerate(down_block_types):
447
+ input_channel = output_channel
448
+ output_channel = block_out_channels[i]
449
+ is_final_block = i == len(block_out_channels) - 1
450
+
451
+ down_block = get_down_block(
452
+ down_block_type,
453
+ num_layers=layers_per_block[i],
454
+ transformer_layers_per_block=transformer_layers_per_block[i],
455
+ in_channels=input_channel,
456
+ out_channels=output_channel,
457
+ temb_channels=blocks_time_embed_dim,
458
+ add_downsample=not is_final_block,
459
+ resnet_eps=norm_eps,
460
+ resnet_act_fn=act_fn,
461
+ resnet_groups=norm_num_groups,
462
+ cross_attention_dim=cross_attention_dim[i],
463
+ num_attention_heads=num_attention_heads[i],
464
+ downsample_padding=downsample_padding,
465
+ dual_cross_attention=dual_cross_attention,
466
+ use_linear_projection=use_linear_projection,
467
+ only_cross_attention=only_cross_attention[i],
468
+ upcast_attention=upcast_attention,
469
+ resnet_time_scale_shift=resnet_time_scale_shift,
470
+ attention_type=attention_type,
471
+ resnet_skip_time_act=resnet_skip_time_act,
472
+ resnet_out_scale_factor=resnet_out_scale_factor,
473
+ cross_attention_norm=cross_attention_norm,
474
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
475
+ dropout=dropout,
476
+ )
477
+ self.down_blocks.append(down_block)
478
+
479
+ # mid
480
+ if mid_block_type == "UNetMidBlock2DCrossAttn":
481
+ self.mid_block = UNetMidBlock2DCrossAttn(
482
+ transformer_layers_per_block=transformer_layers_per_block[-1],
483
+ in_channels=block_out_channels[-1],
484
+ temb_channels=blocks_time_embed_dim,
485
+ dropout=dropout,
486
+ resnet_eps=norm_eps,
487
+ resnet_act_fn=act_fn,
488
+ output_scale_factor=mid_block_scale_factor,
489
+ resnet_time_scale_shift=resnet_time_scale_shift,
490
+ cross_attention_dim=cross_attention_dim[-1],
491
+ num_attention_heads=num_attention_heads[-1],
492
+ resnet_groups=norm_num_groups,
493
+ dual_cross_attention=dual_cross_attention,
494
+ use_linear_projection=use_linear_projection,
495
+ upcast_attention=upcast_attention,
496
+ attention_type=attention_type,
497
+ )
498
+ elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
499
+ self.mid_block = UNetMidBlock2DSimpleCrossAttn(
500
+ in_channels=block_out_channels[-1],
501
+ temb_channels=blocks_time_embed_dim,
502
+ dropout=dropout,
503
+ resnet_eps=norm_eps,
504
+ resnet_act_fn=act_fn,
505
+ output_scale_factor=mid_block_scale_factor,
506
+ cross_attention_dim=cross_attention_dim[-1],
507
+ attention_head_dim=attention_head_dim[-1],
508
+ resnet_groups=norm_num_groups,
509
+ resnet_time_scale_shift=resnet_time_scale_shift,
510
+ skip_time_act=resnet_skip_time_act,
511
+ only_cross_attention=mid_block_only_cross_attention,
512
+ cross_attention_norm=cross_attention_norm,
513
+ )
514
+ elif mid_block_type == "UNetMidBlock2D":
515
+ self.mid_block = UNetMidBlock2D(
516
+ in_channels=block_out_channels[-1],
517
+ temb_channels=blocks_time_embed_dim,
518
+ dropout=dropout,
519
+ num_layers=0,
520
+ resnet_eps=norm_eps,
521
+ resnet_act_fn=act_fn,
522
+ output_scale_factor=mid_block_scale_factor,
523
+ resnet_groups=norm_num_groups,
524
+ resnet_time_scale_shift=resnet_time_scale_shift,
525
+ add_attention=False,
526
+ )
527
+ elif mid_block_type is None:
528
+ self.mid_block = None
529
+ else:
530
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
531
+
532
+ # count how many layers upsample the images
533
+ self.num_upsamplers = 0
534
+
535
+ # up
536
+ reversed_block_out_channels = list(reversed(block_out_channels))
537
+ reversed_num_attention_heads = list(reversed(num_attention_heads))
538
+ reversed_layers_per_block = list(reversed(layers_per_block))
539
+ reversed_cross_attention_dim = list(reversed(cross_attention_dim))
540
+ reversed_transformer_layers_per_block = (
541
+ list(reversed(transformer_layers_per_block))
542
+ if reverse_transformer_layers_per_block is None
543
+ else reverse_transformer_layers_per_block
544
+ )
545
+ only_cross_attention = list(reversed(only_cross_attention))
546
+
547
+ output_channel = reversed_block_out_channels[0]
548
+ for i, up_block_type in enumerate(up_block_types):
549
+ is_final_block = i == len(block_out_channels) - 1
550
+
551
+ prev_output_channel = output_channel
552
+ output_channel = reversed_block_out_channels[i]
553
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
554
+
555
+ # add upsample block for all BUT final layer
556
+ if not is_final_block:
557
+ add_upsample = True
558
+ self.num_upsamplers += 1
559
+ else:
560
+ add_upsample = False
561
+
562
+ up_block = get_up_block(
563
+ up_block_type,
564
+ num_layers=reversed_layers_per_block[i] + 1,
565
+ transformer_layers_per_block=reversed_transformer_layers_per_block[i],
566
+ in_channels=input_channel,
567
+ out_channels=output_channel,
568
+ prev_output_channel=prev_output_channel,
569
+ temb_channels=blocks_time_embed_dim,
570
+ add_upsample=add_upsample,
571
+ resnet_eps=norm_eps,
572
+ resnet_act_fn=act_fn,
573
+ resolution_idx=i,
574
+ resnet_groups=norm_num_groups,
575
+ cross_attention_dim=reversed_cross_attention_dim[i],
576
+ num_attention_heads=reversed_num_attention_heads[i],
577
+ dual_cross_attention=dual_cross_attention,
578
+ use_linear_projection=use_linear_projection,
579
+ only_cross_attention=only_cross_attention[i],
580
+ upcast_attention=upcast_attention,
581
+ resnet_time_scale_shift=resnet_time_scale_shift,
582
+ attention_type=attention_type,
583
+ resnet_skip_time_act=resnet_skip_time_act,
584
+ resnet_out_scale_factor=resnet_out_scale_factor,
585
+ cross_attention_norm=cross_attention_norm,
586
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
587
+ dropout=dropout,
588
+ )
589
+ self.up_blocks.append(up_block)
590
+ prev_output_channel = output_channel
591
+
592
+ # out
593
+ if norm_num_groups is not None:
594
+ self.conv_norm_out = nn.GroupNorm(
595
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
596
+ )
597
+
598
+ self.conv_act = get_activation(act_fn)
599
+
600
+ else:
601
+ self.conv_norm_out = None
602
+ self.conv_act = None
603
+
604
+ conv_out_padding = (conv_out_kernel - 1) // 2
605
+ self.conv_out = nn.Conv2d(
606
+ block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
607
+ )
608
+
609
+ if attention_type in ["gated", "gated-text-image"]:
610
+ positive_len = 768
611
+ if isinstance(cross_attention_dim, int):
612
+ positive_len = cross_attention_dim
613
+ elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
614
+ positive_len = cross_attention_dim[0]
615
+
616
+ feature_type = "text-only" if attention_type == "gated" else "text-image"
617
+ self.position_net = PositionNet(
618
+ positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
619
+ )
620
+
621
+ @property
622
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
623
+ r"""
624
+ Returns:
625
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
626
+ indexed by its weight name.
627
+ """
628
+ # set recursively
629
+ processors = {}
630
+
631
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
632
+ if hasattr(module, "get_processor"):
633
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
634
+
635
+ for sub_name, child in module.named_children():
636
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
637
+
638
+ return processors
639
+
640
+ for name, module in self.named_children():
641
+ fn_recursive_add_processors(name, module, processors)
642
+
643
+ return processors
644
+
645
+ def set_attn_processor(
646
+ self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
647
+ ):
648
+ r"""
649
+ Sets the attention processor to use to compute attention.
650
+
651
+ Parameters:
652
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
653
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
654
+ for **all** `Attention` layers.
655
+
656
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
657
+ processor. This is strongly recommended when setting trainable attention processors.
658
+
659
+ """
660
+ count = len(self.attn_processors.keys())
661
+
662
+ if isinstance(processor, dict) and len(processor) != count:
663
+ raise ValueError(
664
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
665
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
666
+ )
667
+
668
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
669
+ if hasattr(module, "set_processor"):
670
+ if not isinstance(processor, dict):
671
+ module.set_processor(processor, _remove_lora=_remove_lora)
672
+ else:
673
+ module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
674
+
675
+ for sub_name, child in module.named_children():
676
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
677
+
678
+ for name, module in self.named_children():
679
+ fn_recursive_attn_processor(name, module, processor)
680
+
681
+ def set_default_attn_processor(self):
682
+ """
683
+ Disables custom attention processors and sets the default attention implementation.
684
+ """
685
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
686
+ processor = AttnAddedKVProcessor()
687
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
688
+ processor = AttnProcessor()
689
+ else:
690
+ raise ValueError(
691
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
692
+ )
693
+
694
+ self.set_attn_processor(processor, _remove_lora=True)
695
+
696
+ def set_attention_slice(self, slice_size):
697
+ r"""
698
+ Enable sliced attention computation.
699
+
700
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
701
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
702
+
703
+ Args:
704
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
705
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
706
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
707
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
708
+ must be a multiple of `slice_size`.
709
+ """
710
+ sliceable_head_dims = []
711
+
712
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
713
+ if hasattr(module, "set_attention_slice"):
714
+ sliceable_head_dims.append(module.sliceable_head_dim)
715
+
716
+ for child in module.children():
717
+ fn_recursive_retrieve_sliceable_dims(child)
718
+
719
+ # retrieve number of attention layers
720
+ for module in self.children():
721
+ fn_recursive_retrieve_sliceable_dims(module)
722
+
723
+ num_sliceable_layers = len(sliceable_head_dims)
724
+
725
+ if slice_size == "auto":
726
+ # half the attention head size is usually a good trade-off between
727
+ # speed and memory
728
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
729
+ elif slice_size == "max":
730
+ # make smallest slice possible
731
+ slice_size = num_sliceable_layers * [1]
732
+
733
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
734
+
735
+ if len(slice_size) != len(sliceable_head_dims):
736
+ raise ValueError(
737
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
738
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
739
+ )
740
+
741
+ for i in range(len(slice_size)):
742
+ size = slice_size[i]
743
+ dim = sliceable_head_dims[i]
744
+ if size is not None and size > dim:
745
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
746
+
747
+ # Recursively walk through all the children.
748
+ # Any children which exposes the set_attention_slice method
749
+ # gets the message
750
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
751
+ if hasattr(module, "set_attention_slice"):
752
+ module.set_attention_slice(slice_size.pop())
753
+
754
+ for child in module.children():
755
+ fn_recursive_set_attention_slice(child, slice_size)
756
+
757
+ reversed_slice_size = list(reversed(slice_size))
758
+ for module in self.children():
759
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
760
+
761
+ def _set_gradient_checkpointing(self, module, value=False):
762
+ if hasattr(module, "gradient_checkpointing"):
763
+ module.gradient_checkpointing = value
764
+
765
+ def enable_freeu(self, s1, s2, b1, b2):
766
+ r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
767
+
768
+ The suffixes after the scaling factors represent the stage blocks where they are being applied.
769
+
770
+ Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
771
+ are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
772
+
773
+ Args:
774
+ s1 (`float`):
775
+ Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
776
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
777
+ s2 (`float`):
778
+ Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
779
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
780
+ b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
781
+ b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
782
+ """
783
+ for i, upsample_block in enumerate(self.up_blocks):
784
+ setattr(upsample_block, "s1", s1)
785
+ setattr(upsample_block, "s2", s2)
786
+ setattr(upsample_block, "b1", b1)
787
+ setattr(upsample_block, "b2", b2)
788
+
789
+ def disable_freeu(self):
790
+ """Disables the FreeU mechanism."""
791
+ freeu_keys = {"s1", "s2", "b1", "b2"}
792
+ for i, upsample_block in enumerate(self.up_blocks):
793
+ for k in freeu_keys:
794
+ if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
795
+ setattr(upsample_block, k, None)
796
+
797
+ def forward(
798
+ self,
799
+ sample: torch.FloatTensor,
800
+ timestep: Union[torch.Tensor, float, int],
801
+ encoder_hidden_states: torch.Tensor,
802
+ camera_matrix_embeds: torch.Tensor = None,
803
+ class_labels: Optional[torch.Tensor] = None,
804
+ timestep_cond: Optional[torch.Tensor] = None,
805
+ attention_mask: Optional[torch.Tensor] = None,
806
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
807
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
808
+ down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
809
+ mid_block_additional_residual: Optional[torch.Tensor] = None,
810
+ down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
811
+ encoder_attention_mask: Optional[torch.Tensor] = None,
812
+ return_dict: bool = True,
813
+ ) -> Union[UNet2DConditionOutput, Tuple]:
814
+ r"""
815
+ The [`UNet2DConditionModel`] forward method.
816
+
817
+ Args:
818
+ sample (`torch.FloatTensor`):
819
+ The noisy input tensor with the following shape `(batch, channel, height, width)`.
820
+ timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
821
+ encoder_hidden_states (`torch.FloatTensor`):
822
+ The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
823
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
824
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
825
+ timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
826
+ Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
827
+ through the `self.time_embedding` layer to obtain the timestep embeddings.
828
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
829
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
830
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
831
+ negative values to the attention scores corresponding to "discard" tokens.
832
+ cross_attention_kwargs (`dict`, *optional*):
833
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
834
+ `self.processor` in
835
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
836
+ added_cond_kwargs: (`dict`, *optional*):
837
+ A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
838
+ are passed along to the UNet blocks.
839
+ down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
840
+ A tuple of tensors that if specified are added to the residuals of down unet blocks.
841
+ mid_block_additional_residual: (`torch.Tensor`, *optional*):
842
+ A tensor that if specified is added to the residual of the middle unet block.
843
+ encoder_attention_mask (`torch.Tensor`):
844
+ A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
845
+ `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
846
+ which adds large negative values to the attention scores corresponding to "discard" tokens.
847
+ return_dict (`bool`, *optional*, defaults to `True`):
848
+ Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
849
+ tuple.
850
+ cross_attention_kwargs (`dict`, *optional*):
851
+ A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
852
+ added_cond_kwargs: (`dict`, *optional*):
853
+ A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
854
+ are passed along to the UNet blocks.
855
+ down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
856
+ additional residuals to be added to UNet long skip connections from down blocks to up blocks for
857
+ example from ControlNet side model(s)
858
+ mid_block_additional_residual (`torch.Tensor`, *optional*):
859
+ additional residual to be added to UNet mid block output, for example from ControlNet side model
860
+ down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
861
+ additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
862
+
863
+ Returns:
864
+ [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
865
+ If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
866
+ a `tuple` is returned where the first element is the sample tensor.
867
+ """
868
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
869
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
870
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
871
+ # on the fly if necessary.
872
+ default_overall_up_factor = 2**self.num_upsamplers
873
+
874
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
875
+ forward_upsample_size = False
876
+ upsample_size = None
877
+
878
+ for dim in sample.shape[-2:]:
879
+ if dim % default_overall_up_factor != 0:
880
+ # Forward upsample size to force interpolation output size.
881
+ forward_upsample_size = True
882
+ break
883
+
884
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
885
+ # expects mask of shape:
886
+ # [batch, key_tokens]
887
+ # adds singleton query_tokens dimension:
888
+ # [batch, 1, key_tokens]
889
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
890
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
891
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
892
+ if attention_mask is not None:
893
+ # assume that mask is expressed as:
894
+ # (1 = keep, 0 = discard)
895
+ # convert mask into a bias that can be added to attention scores:
896
+ # (keep = +0, discard = -10000.0)
897
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
898
+ attention_mask = attention_mask.unsqueeze(1)
899
+
900
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
901
+ if encoder_attention_mask is not None:
902
+ encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
903
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
904
+
905
+ # 0. center input if necessary
906
+ if self.config.center_input_sample:
907
+ sample = 2 * sample - 1.0
908
+
909
+ # 1. time
910
+ timesteps = timestep
911
+ if not torch.is_tensor(timesteps):
912
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
913
+ # This would be a good case for the `match` statement (Python 3.10+)
914
+ is_mps = sample.device.type == "mps"
915
+ if isinstance(timestep, float):
916
+ dtype = torch.float32 if is_mps else torch.float64
917
+ else:
918
+ dtype = torch.int32 if is_mps else torch.int64
919
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
920
+ elif len(timesteps.shape) == 0:
921
+ timesteps = timesteps[None].to(sample.device)
922
+
923
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
924
+ timesteps = timesteps.expand(sample.shape[0])
925
+
926
+ t_emb = self.time_proj(timesteps)
927
+
928
+ # `Timesteps` does not contain any weights and will always return f32 tensors
929
+ # but time_embedding might actually be running in fp16. so we need to cast here.
930
+ # there might be better ways to encapsulate this.
931
+ t_emb = t_emb.to(dtype=sample.dtype)
932
+
933
+ emb = self.time_embedding(t_emb, timestep_cond)
934
+ aug_emb = None
935
+
936
+ if self.class_embedding is not None:
937
+ if class_labels is None:
938
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
939
+
940
+ if self.config.class_embed_type == "timestep":
941
+ class_labels = self.time_proj(class_labels)
942
+
943
+ # `Timesteps` does not contain any weights and will always return f32 tensors
944
+ # there might be better ways to encapsulate this.
945
+ class_labels = class_labels.to(dtype=sample.dtype)
946
+
947
+ class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
948
+
949
+ if self.config.class_embeddings_concat:
950
+ emb = torch.cat([emb, class_emb], dim=-1)
951
+ else:
952
+ emb = emb + class_emb
953
+
954
+ # Add camera matrix embedding to timestep embedding
955
+ if camera_matrix_embeds is not None:
956
+ emb = emb + camera_matrix_embeds
957
+
958
+ if self.config.addition_embed_type == "text":
959
+ aug_emb = self.add_embedding(encoder_hidden_states)
960
+ elif self.config.addition_embed_type == "text_image":
961
+ # Kandinsky 2.1 - style
962
+ if "image_embeds" not in added_cond_kwargs:
963
+ raise ValueError(
964
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
965
+ )
966
+
967
+ image_embs = added_cond_kwargs.get("image_embeds")
968
+ text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
969
+ aug_emb = self.add_embedding(text_embs, image_embs)
970
+ elif self.config.addition_embed_type == "text_time":
971
+ # SDXL - style
972
+ if "text_embeds" not in added_cond_kwargs:
973
+ raise ValueError(
974
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
975
+ )
976
+ text_embeds = added_cond_kwargs.get("text_embeds")
977
+ if "time_ids" not in added_cond_kwargs:
978
+ raise ValueError(
979
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
980
+ )
981
+ time_ids = added_cond_kwargs.get("time_ids")
982
+ time_embeds = self.add_time_proj(time_ids.flatten())
983
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
984
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
985
+ add_embeds = add_embeds.to(emb.dtype)
986
+ aug_emb = self.add_embedding(add_embeds)
987
+ elif self.config.addition_embed_type == "image":
988
+ # Kandinsky 2.2 - style
989
+ if "image_embeds" not in added_cond_kwargs:
990
+ raise ValueError(
991
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
992
+ )
993
+ image_embs = added_cond_kwargs.get("image_embeds")
994
+ aug_emb = self.add_embedding(image_embs)
995
+ elif self.config.addition_embed_type == "image_hint":
996
+ # Kandinsky 2.2 - style
997
+ if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
998
+ raise ValueError(
999
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
1000
+ )
1001
+ image_embs = added_cond_kwargs.get("image_embeds")
1002
+ hint = added_cond_kwargs.get("hint")
1003
+ aug_emb, hint = self.add_embedding(image_embs, hint)
1004
+ sample = torch.cat([sample, hint], dim=1)
1005
+
1006
+ emb = emb + aug_emb if aug_emb is not None else emb
1007
+
1008
+ if self.time_embed_act is not None:
1009
+ emb = self.time_embed_act(emb)
1010
+
1011
+ if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
1012
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
1013
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
1014
+ # Kadinsky 2.1 - style
1015
+ if "image_embeds" not in added_cond_kwargs:
1016
+ raise ValueError(
1017
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1018
+ )
1019
+
1020
+ image_embeds = added_cond_kwargs.get("image_embeds")
1021
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
1022
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
1023
+ # Kandinsky 2.2 - style
1024
+ if "image_embeds" not in added_cond_kwargs:
1025
+ raise ValueError(
1026
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1027
+ )
1028
+ image_embeds = added_cond_kwargs.get("image_embeds")
1029
+ encoder_hidden_states = self.encoder_hid_proj(image_embeds)
1030
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
1031
+ if "image_embeds" not in added_cond_kwargs:
1032
+ raise ValueError(
1033
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1034
+ )
1035
+ image_embeds = added_cond_kwargs.get("image_embeds")
1036
+ image_embeds = self.encoder_hid_proj(image_embeds).to(encoder_hidden_states.dtype)
1037
+ encoder_hidden_states = torch.cat([encoder_hidden_states, image_embeds], dim=1)
1038
+
1039
+ # 2. pre-process
1040
+ sample = self.conv_in(sample)
1041
+
1042
+ # 2.5 GLIGEN position net
1043
+ if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
1044
+ cross_attention_kwargs = cross_attention_kwargs.copy()
1045
+ gligen_args = cross_attention_kwargs.pop("gligen")
1046
+ cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
1047
+
1048
+ # 3. down
1049
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
1050
+ if USE_PEFT_BACKEND:
1051
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
1052
+ scale_lora_layers(self, lora_scale)
1053
+
1054
+ is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
1055
+ # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
1056
+ is_adapter = down_intrablock_additional_residuals is not None
1057
+ # maintain backward compatibility for legacy usage, where
1058
+ # T2I-Adapter and ControlNet both use down_block_additional_residuals arg
1059
+ # but can only use one or the other
1060
+ if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
1061
+ deprecate(
1062
+ "T2I should not use down_block_additional_residuals",
1063
+ "1.3.0",
1064
+ "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
1065
+ and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
1066
+ for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
1067
+ standard_warn=False,
1068
+ )
1069
+ down_intrablock_additional_residuals = down_block_additional_residuals
1070
+ is_adapter = True
1071
+
1072
+ down_block_res_samples = (sample,)
1073
+ for downsample_block in self.down_blocks:
1074
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
1075
+ # For t2i-adapter CrossAttnDownBlock2D
1076
+ additional_residuals = {}
1077
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
1078
+ additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
1079
+
1080
+ sample, res_samples = downsample_block(
1081
+ hidden_states=sample,
1082
+ temb=emb,
1083
+ encoder_hidden_states=encoder_hidden_states,
1084
+ attention_mask=attention_mask,
1085
+ cross_attention_kwargs=cross_attention_kwargs,
1086
+ encoder_attention_mask=encoder_attention_mask,
1087
+ **additional_residuals,
1088
+ )
1089
+ else:
1090
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
1091
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
1092
+ sample += down_intrablock_additional_residuals.pop(0)
1093
+
1094
+ down_block_res_samples += res_samples
1095
+
1096
+ if is_controlnet:
1097
+ new_down_block_res_samples = ()
1098
+
1099
+ for down_block_res_sample, down_block_additional_residual in zip(
1100
+ down_block_res_samples, down_block_additional_residuals
1101
+ ):
1102
+ down_block_res_sample = down_block_res_sample + down_block_additional_residual
1103
+ new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
1104
+
1105
+ down_block_res_samples = new_down_block_res_samples
1106
+
1107
+ # 4. mid
1108
+ if self.mid_block is not None:
1109
+ if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
1110
+ sample = self.mid_block(
1111
+ sample,
1112
+ emb,
1113
+ encoder_hidden_states=encoder_hidden_states,
1114
+ attention_mask=attention_mask,
1115
+ cross_attention_kwargs=cross_attention_kwargs,
1116
+ encoder_attention_mask=encoder_attention_mask,
1117
+ )
1118
+ else:
1119
+ sample = self.mid_block(sample, emb)
1120
+
1121
+ # To support T2I-Adapter-XL
1122
+ if (
1123
+ is_adapter
1124
+ and len(down_intrablock_additional_residuals) > 0
1125
+ and sample.shape == down_intrablock_additional_residuals[0].shape
1126
+ ):
1127
+ sample += down_intrablock_additional_residuals.pop(0)
1128
+
1129
+ if is_controlnet:
1130
+ sample = sample + mid_block_additional_residual
1131
+
1132
+ # 5. up
1133
+ for i, upsample_block in enumerate(self.up_blocks):
1134
+ is_final_block = i == len(self.up_blocks) - 1
1135
+
1136
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
1137
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
1138
+
1139
+ # if we have not reached the final block and need to forward the
1140
+ # upsample size, we do it here
1141
+ if not is_final_block and forward_upsample_size:
1142
+ upsample_size = down_block_res_samples[-1].shape[2:]
1143
+
1144
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
1145
+ sample = upsample_block(
1146
+ hidden_states=sample,
1147
+ temb=emb,
1148
+ res_hidden_states_tuple=res_samples,
1149
+ encoder_hidden_states=encoder_hidden_states,
1150
+ cross_attention_kwargs=cross_attention_kwargs,
1151
+ upsample_size=upsample_size,
1152
+ attention_mask=attention_mask,
1153
+ encoder_attention_mask=encoder_attention_mask,
1154
+ )
1155
+ else:
1156
+ sample = upsample_block(
1157
+ hidden_states=sample,
1158
+ temb=emb,
1159
+ res_hidden_states_tuple=res_samples,
1160
+ upsample_size=upsample_size,
1161
+ scale=lora_scale,
1162
+ )
1163
+
1164
+ # 6. post-process
1165
+ if self.conv_norm_out:
1166
+ sample = self.conv_norm_out(sample)
1167
+ sample = self.conv_act(sample)
1168
+ sample = self.conv_out(sample)
1169
+
1170
+ if USE_PEFT_BACKEND:
1171
+ # remove `lora_scale` from each PEFT layer
1172
+ unscale_lora_layers(self, lora_scale)
1173
+
1174
+ if not return_dict:
1175
+ return (sample,)
1176
+
1177
+ return UNet2DConditionOutput(sample=sample)