Upload 2 files
Browse files- attention_processor.py +118 -0
- pipeline_mvdream.py +1048 -0
attention_processor.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from einops import rearrange
|
5 |
+
|
6 |
+
from diffusers.models.attention_processor import Attention
|
7 |
+
from diffusers.utils.import_utils import is_xformers_available
|
8 |
+
|
9 |
+
if is_xformers_available:
|
10 |
+
import xformers
|
11 |
+
import xformers.ops
|
12 |
+
else:
|
13 |
+
xformers = None
|
14 |
+
|
15 |
+
class CrossViewAttnProcessor:
|
16 |
+
def __init__(self, num_views: int = 1):
|
17 |
+
self.num_views = num_views
|
18 |
+
|
19 |
+
def __call__(
|
20 |
+
self,
|
21 |
+
attn: Attention,
|
22 |
+
hidden_states,
|
23 |
+
encoder_hidden_states=None,
|
24 |
+
attention_mask=None,
|
25 |
+
):
|
26 |
+
batch_size, sequence_length, _ = (
|
27 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
28 |
+
)
|
29 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
30 |
+
query = attn.to_q(hidden_states)
|
31 |
+
|
32 |
+
is_cross_attention = encoder_hidden_states is not None
|
33 |
+
if encoder_hidden_states is None:
|
34 |
+
encoder_hidden_states = hidden_states
|
35 |
+
elif attn.cross_attention_norm:
|
36 |
+
encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
|
37 |
+
|
38 |
+
key = attn.to_k(encoder_hidden_states)
|
39 |
+
value = attn.to_v(encoder_hidden_states)
|
40 |
+
|
41 |
+
if not is_cross_attention and self.num_views > 1:
|
42 |
+
query = rearrange(query, "(b n) l d -> b (n l) d", n=self.num_views)
|
43 |
+
key = rearrange(key, "(b n) l d -> b (n l) d", n=self.num_views)
|
44 |
+
value = rearrange(value, "(b n) l d -> b (n l) d", n=self.num_views)
|
45 |
+
|
46 |
+
query = attn.head_to_batch_dim(query)
|
47 |
+
key = attn.head_to_batch_dim(key)
|
48 |
+
value = attn.head_to_batch_dim(value)
|
49 |
+
|
50 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
51 |
+
hidden_states = torch.bmm(attention_probs, value)
|
52 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
53 |
+
|
54 |
+
# linear proj
|
55 |
+
hidden_states = attn.to_out[0](hidden_states)
|
56 |
+
# dropout
|
57 |
+
hidden_states = attn.to_out[1](hidden_states)
|
58 |
+
|
59 |
+
if not is_cross_attention and self.num_views > 1:
|
60 |
+
hidden_states = rearrange(hidden_states, "b (n l) d -> (b n) l d", n=self.num_views)
|
61 |
+
|
62 |
+
return hidden_states
|
63 |
+
|
64 |
+
class XFormersCrossViewAttnProcessor:
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
num_views: int = 1,
|
68 |
+
attention_op: Optional[Callable] = None,
|
69 |
+
):
|
70 |
+
self.num_views = num_views
|
71 |
+
self.attention_op = attention_op
|
72 |
+
|
73 |
+
def __call__(
|
74 |
+
self,
|
75 |
+
attn: Attention,
|
76 |
+
hidden_states,
|
77 |
+
encoder_hidden_states=None,
|
78 |
+
attention_mask=None,
|
79 |
+
):
|
80 |
+
batch_size, sequence_length, _ = (
|
81 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
82 |
+
)
|
83 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
84 |
+
query = attn.to_q(hidden_states)
|
85 |
+
|
86 |
+
is_cross_attention = encoder_hidden_states is not None
|
87 |
+
if encoder_hidden_states is None:
|
88 |
+
encoder_hidden_states = hidden_states
|
89 |
+
elif attn.cross_attention_norm:
|
90 |
+
encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
|
91 |
+
|
92 |
+
key = attn.to_k(encoder_hidden_states)
|
93 |
+
value = attn.to_v(encoder_hidden_states)
|
94 |
+
|
95 |
+
if not is_cross_attention and self.num_views > 1:
|
96 |
+
query = rearrange(query, "(b n) l d -> b (n l) d", n=self.num_views)
|
97 |
+
key = rearrange(key, "(b n) l d -> b (n l) d", n=self.num_views)
|
98 |
+
value = rearrange(value, "(b n) l d -> b (n l) d", n=self.num_views)
|
99 |
+
|
100 |
+
query = attn.head_to_batch_dim(query)
|
101 |
+
key = attn.head_to_batch_dim(key)
|
102 |
+
value = attn.head_to_batch_dim(value)
|
103 |
+
|
104 |
+
hidden_states = xformers.ops.memory_efficient_attention(
|
105 |
+
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
|
106 |
+
)
|
107 |
+
hidden_states = hidden_states.to(query.dtype)
|
108 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
109 |
+
|
110 |
+
# linear proj
|
111 |
+
hidden_states = attn.to_out[0](hidden_states)
|
112 |
+
# dropout
|
113 |
+
hidden_states = attn.to_out[1](hidden_states)
|
114 |
+
|
115 |
+
if not is_cross_attention and self.num_views > 1:
|
116 |
+
hidden_states = rearrange(hidden_states, "b (n l) d -> (b n) l d", n=self.num_views)
|
117 |
+
|
118 |
+
return hidden_states
|
pipeline_mvdream.py
ADDED
@@ -0,0 +1,1048 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# pipeline of MVDream sampling
|
2 |
+
# Modified from ..stable_diffusion.pipeline_stable_diffusion.py but with safety_checker deprecated
|
3 |
+
|
4 |
+
import inspect
|
5 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
6 |
+
from dataclasses import dataclass
|
7 |
+
|
8 |
+
import PIL
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
from packaging import version
|
12 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
13 |
+
|
14 |
+
from diffusers.configuration_utils import FrozenDict
|
15 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
16 |
+
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
17 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
18 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
19 |
+
from diffusers.models.attention_processor import (
|
20 |
+
AttnProcessor,
|
21 |
+
XFormersAttnProcessor
|
22 |
+
)
|
23 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
24 |
+
from diffusers.utils import (
|
25 |
+
BaseOutput,
|
26 |
+
USE_PEFT_BACKEND,
|
27 |
+
deprecate,
|
28 |
+
logging,
|
29 |
+
replace_example_docstring,
|
30 |
+
scale_lora_layers,
|
31 |
+
unscale_lora_layers,
|
32 |
+
is_xformers_available
|
33 |
+
)
|
34 |
+
from diffusers.utils.torch_utils import randn_tensor
|
35 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
36 |
+
|
37 |
+
from unet import UNet2DConditionModel
|
38 |
+
from camera_proj import CameraMatrixEmbedding
|
39 |
+
from attention_processor import (
|
40 |
+
CrossViewAttnProcessor,
|
41 |
+
XFormersCrossViewAttnProcessor,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
47 |
+
|
48 |
+
|
49 |
+
@dataclass
|
50 |
+
class MVDreamPipelineOutput(BaseOutput):
|
51 |
+
"""
|
52 |
+
Output class for Stable Diffusion pipelines.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
56 |
+
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
57 |
+
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
58 |
+
"""
|
59 |
+
|
60 |
+
images: Union[List[PIL.Image.Image], np.ndarray, torch.Tensor]
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
def set_self_attn_processor(model, processor):
|
65 |
+
r"""
|
66 |
+
Parameters:
|
67 |
+
`processor (`dict` of `AttentionProcessor` or `AttentionProcessor`):
|
68 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
69 |
+
of **all** `Attention` layers.
|
70 |
+
In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.:
|
71 |
+
|
72 |
+
"""
|
73 |
+
|
74 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
75 |
+
if hasattr(module, "set_processor") and 'attn1' in name:
|
76 |
+
if not isinstance(processor, dict):
|
77 |
+
module.set_processor(processor)
|
78 |
+
else:
|
79 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
80 |
+
|
81 |
+
for sub_name, child in module.named_children():
|
82 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
83 |
+
|
84 |
+
for name, module in model.named_children():
|
85 |
+
fn_recursive_attn_processor(name, module, processor)
|
86 |
+
|
87 |
+
|
88 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
89 |
+
"""
|
90 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
91 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
92 |
+
"""
|
93 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
94 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
95 |
+
# rescale the results from guidance (fixes overexposure)
|
96 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
97 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
98 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
99 |
+
return noise_cfg
|
100 |
+
|
101 |
+
|
102 |
+
def retrieve_timesteps(
|
103 |
+
scheduler,
|
104 |
+
num_inference_steps: Optional[int] = None,
|
105 |
+
device: Optional[Union[str, torch.device]] = None,
|
106 |
+
timesteps: Optional[List[int]] = None,
|
107 |
+
**kwargs,
|
108 |
+
):
|
109 |
+
"""
|
110 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
111 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
scheduler (`SchedulerMixin`):
|
115 |
+
The scheduler to get timesteps from.
|
116 |
+
num_inference_steps (`int`):
|
117 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
118 |
+
`timesteps` must be `None`.
|
119 |
+
device (`str` or `torch.device`, *optional*):
|
120 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
121 |
+
timesteps (`List[int]`, *optional*):
|
122 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
123 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
124 |
+
must be `None`.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
128 |
+
second element is the number of inference steps.
|
129 |
+
"""
|
130 |
+
if timesteps is not None:
|
131 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
132 |
+
if not accepts_timesteps:
|
133 |
+
raise ValueError(
|
134 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
135 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
136 |
+
)
|
137 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
138 |
+
timesteps = scheduler.timesteps
|
139 |
+
num_inference_steps = len(timesteps)
|
140 |
+
else:
|
141 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
142 |
+
timesteps = scheduler.timesteps
|
143 |
+
return timesteps, num_inference_steps
|
144 |
+
|
145 |
+
|
146 |
+
class MVDreamPipeline(
|
147 |
+
DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
|
148 |
+
):
|
149 |
+
r"""
|
150 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
151 |
+
|
152 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
153 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
154 |
+
|
155 |
+
The pipeline also inherits the following loading methods:
|
156 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
157 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
158 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
159 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
160 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
161 |
+
|
162 |
+
Args:
|
163 |
+
vae ([`AutoencoderKL`]):
|
164 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
165 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
166 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
167 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
168 |
+
A `CLIPTokenizer` to tokenize text.
|
169 |
+
unet ([`UNet2DConditionModel`]):
|
170 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
171 |
+
camera_proj ([`CameraMatrixEmbedding`]):
|
172 |
+
A `CameraMatrixEmbedding` to project the camera extrinsic matrices to embeddings.
|
173 |
+
scheduler ([`SchedulerMixin`]):
|
174 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
175 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
176 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
177 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
178 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
179 |
+
about a model's potential harms.
|
180 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
181 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
182 |
+
"""
|
183 |
+
|
184 |
+
model_cpu_offload_seq = "text_encoder->unet->vae"
|
185 |
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
186 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
187 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
188 |
+
|
189 |
+
def __init__(
|
190 |
+
self,
|
191 |
+
vae: AutoencoderKL,
|
192 |
+
text_encoder: CLIPTextModel,
|
193 |
+
tokenizer: CLIPTokenizer,
|
194 |
+
unet: UNet2DConditionModel,
|
195 |
+
camera_proj: CameraMatrixEmbedding,
|
196 |
+
scheduler: KarrasDiffusionSchedulers,
|
197 |
+
feature_extractor: CLIPImageProcessor,
|
198 |
+
safety_checker = None,
|
199 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
200 |
+
requires_safety_checker: bool = False,
|
201 |
+
):
|
202 |
+
super().__init__()
|
203 |
+
|
204 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
205 |
+
deprecation_message = (
|
206 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
207 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
208 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
209 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
210 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
211 |
+
" file"
|
212 |
+
)
|
213 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
214 |
+
new_config = dict(scheduler.config)
|
215 |
+
new_config["steps_offset"] = 1
|
216 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
217 |
+
|
218 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
219 |
+
deprecation_message = (
|
220 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
221 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
222 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
223 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
224 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
225 |
+
)
|
226 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
227 |
+
new_config = dict(scheduler.config)
|
228 |
+
new_config["clip_sample"] = False
|
229 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
230 |
+
|
231 |
+
if safety_checker is None and requires_safety_checker:
|
232 |
+
logger.warning(
|
233 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
234 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
235 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
236 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
237 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
238 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
239 |
+
)
|
240 |
+
|
241 |
+
if safety_checker is not None and feature_extractor is None:
|
242 |
+
raise ValueError(
|
243 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
244 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
245 |
+
)
|
246 |
+
|
247 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
248 |
+
version.parse(unet.config._diffusers_version).base_version
|
249 |
+
) < version.parse("0.9.0.dev0")
|
250 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
251 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
252 |
+
deprecation_message = (
|
253 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
254 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
255 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
256 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
257 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
258 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
259 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
260 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
261 |
+
" the `unet/config.json` file"
|
262 |
+
)
|
263 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
264 |
+
new_config = dict(unet.config)
|
265 |
+
new_config["sample_size"] = 64
|
266 |
+
unet._internal_dict = FrozenDict(new_config)
|
267 |
+
|
268 |
+
|
269 |
+
self.register_modules(
|
270 |
+
vae=vae,
|
271 |
+
text_encoder=text_encoder,
|
272 |
+
tokenizer=tokenizer,
|
273 |
+
unet=unet,
|
274 |
+
camera_proj=camera_proj,
|
275 |
+
scheduler=scheduler,
|
276 |
+
safety_checker=safety_checker,
|
277 |
+
feature_extractor=feature_extractor,
|
278 |
+
image_encoder=image_encoder,
|
279 |
+
)
|
280 |
+
|
281 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
282 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
283 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
284 |
+
|
285 |
+
def enable_vae_slicing(self):
|
286 |
+
r"""
|
287 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
288 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
289 |
+
"""
|
290 |
+
self.vae.enable_slicing()
|
291 |
+
|
292 |
+
def disable_vae_slicing(self):
|
293 |
+
r"""
|
294 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
295 |
+
computing decoding in one step.
|
296 |
+
"""
|
297 |
+
self.vae.disable_slicing()
|
298 |
+
|
299 |
+
def enable_vae_tiling(self):
|
300 |
+
r"""
|
301 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
302 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
303 |
+
processing larger images.
|
304 |
+
"""
|
305 |
+
self.vae.enable_tiling()
|
306 |
+
|
307 |
+
def disable_vae_tiling(self):
|
308 |
+
r"""
|
309 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
310 |
+
computing decoding in one step.
|
311 |
+
"""
|
312 |
+
self.vae.disable_tiling()
|
313 |
+
|
314 |
+
def _set_unet_self_attn_cross_view_processor(self, num_views=4):
|
315 |
+
attn_procs_cls = XFormersCrossViewAttnProcessor if is_xformers_available() else CrossViewAttnProcessor
|
316 |
+
set_self_attn_processor(
|
317 |
+
self.unet, attn_procs_cls(num_views=num_views)
|
318 |
+
)
|
319 |
+
|
320 |
+
def _set_unet_self_attn_vanilla_processor(self):
|
321 |
+
attn_procs_cls = XFormersAttnProcessor if is_xformers_available() else AttnProcessor
|
322 |
+
set_self_attn_processor(self.unet, attn_procs_cls())
|
323 |
+
|
324 |
+
def _encode_prompt(
|
325 |
+
self,
|
326 |
+
prompt,
|
327 |
+
device,
|
328 |
+
num_images_per_prompt,
|
329 |
+
do_classifier_free_guidance,
|
330 |
+
negative_prompt=None,
|
331 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
332 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
333 |
+
lora_scale: Optional[float] = None,
|
334 |
+
**kwargs,
|
335 |
+
):
|
336 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
337 |
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
338 |
+
|
339 |
+
prompt_embeds_tuple = self.encode_prompt(
|
340 |
+
prompt=prompt,
|
341 |
+
device=device,
|
342 |
+
num_images_per_prompt=num_images_per_prompt,
|
343 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
344 |
+
negative_prompt=negative_prompt,
|
345 |
+
prompt_embeds=prompt_embeds,
|
346 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
347 |
+
lora_scale=lora_scale,
|
348 |
+
**kwargs,
|
349 |
+
)
|
350 |
+
|
351 |
+
# concatenate for backwards comp
|
352 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
353 |
+
|
354 |
+
return prompt_embeds
|
355 |
+
|
356 |
+
def encode_prompt(
|
357 |
+
self,
|
358 |
+
prompt,
|
359 |
+
device,
|
360 |
+
num_images_per_prompt,
|
361 |
+
do_classifier_free_guidance,
|
362 |
+
negative_prompt=None,
|
363 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
364 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
365 |
+
lora_scale: Optional[float] = None,
|
366 |
+
clip_skip: Optional[int] = None,
|
367 |
+
):
|
368 |
+
r"""
|
369 |
+
Encodes the prompt into text encoder hidden states.
|
370 |
+
|
371 |
+
Args:
|
372 |
+
prompt (`str` or `List[str]`, *optional*):
|
373 |
+
prompt to be encoded
|
374 |
+
device: (`torch.device`):
|
375 |
+
torch device
|
376 |
+
num_images_per_prompt (`int`):
|
377 |
+
number of images that should be generated per prompt
|
378 |
+
do_classifier_free_guidance (`bool`):
|
379 |
+
whether to use classifier free guidance or not
|
380 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
381 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
382 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
383 |
+
less than `1`).
|
384 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
385 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
386 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
387 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
388 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
389 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
390 |
+
argument.
|
391 |
+
lora_scale (`float`, *optional*):
|
392 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
393 |
+
clip_skip (`int`, *optional*):
|
394 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
395 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
396 |
+
"""
|
397 |
+
# set lora scale so that monkey patched LoRA
|
398 |
+
# function of text encoder can correctly access it
|
399 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
400 |
+
self._lora_scale = lora_scale
|
401 |
+
|
402 |
+
# dynamically adjust the LoRA scale
|
403 |
+
if not USE_PEFT_BACKEND:
|
404 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
405 |
+
else:
|
406 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
407 |
+
|
408 |
+
if prompt is not None and isinstance(prompt, str):
|
409 |
+
batch_size = 1
|
410 |
+
elif prompt is not None and isinstance(prompt, list):
|
411 |
+
batch_size = len(prompt)
|
412 |
+
else:
|
413 |
+
batch_size = prompt_embeds.shape[0]
|
414 |
+
|
415 |
+
if prompt_embeds is None:
|
416 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
417 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
418 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
419 |
+
|
420 |
+
text_inputs = self.tokenizer(
|
421 |
+
prompt,
|
422 |
+
padding="max_length",
|
423 |
+
max_length=self.tokenizer.model_max_length,
|
424 |
+
truncation=True,
|
425 |
+
return_tensors="pt",
|
426 |
+
)
|
427 |
+
text_input_ids = text_inputs.input_ids
|
428 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
429 |
+
|
430 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
431 |
+
text_input_ids, untruncated_ids
|
432 |
+
):
|
433 |
+
removed_text = self.tokenizer.batch_decode(
|
434 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
435 |
+
)
|
436 |
+
logger.warning(
|
437 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
438 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
439 |
+
)
|
440 |
+
|
441 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
442 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
443 |
+
else:
|
444 |
+
attention_mask = None
|
445 |
+
|
446 |
+
if clip_skip is None:
|
447 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
448 |
+
prompt_embeds = prompt_embeds[0]
|
449 |
+
else:
|
450 |
+
prompt_embeds = self.text_encoder(
|
451 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
452 |
+
)
|
453 |
+
# Access the `hidden_states` first, that contains a tuple of
|
454 |
+
# all the hidden states from the encoder layers. Then index into
|
455 |
+
# the tuple to access the hidden states from the desired layer.
|
456 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
457 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
458 |
+
# representations. The `last_hidden_states` that we typically use for
|
459 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
460 |
+
# layer.
|
461 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
462 |
+
|
463 |
+
if self.text_encoder is not None:
|
464 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
465 |
+
elif self.unet is not None:
|
466 |
+
prompt_embeds_dtype = self.unet.dtype
|
467 |
+
else:
|
468 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
469 |
+
|
470 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
471 |
+
|
472 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
473 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
474 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
475 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
476 |
+
|
477 |
+
# get unconditional embeddings for classifier free guidance
|
478 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
479 |
+
uncond_tokens: List[str]
|
480 |
+
if negative_prompt is None:
|
481 |
+
uncond_tokens = [""] * batch_size
|
482 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
483 |
+
raise TypeError(
|
484 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
485 |
+
f" {type(prompt)}."
|
486 |
+
)
|
487 |
+
elif isinstance(negative_prompt, str):
|
488 |
+
uncond_tokens = [negative_prompt]
|
489 |
+
elif batch_size != len(negative_prompt):
|
490 |
+
raise ValueError(
|
491 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
492 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
493 |
+
" the batch size of `prompt`."
|
494 |
+
)
|
495 |
+
else:
|
496 |
+
uncond_tokens = negative_prompt
|
497 |
+
|
498 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
499 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
500 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
501 |
+
|
502 |
+
max_length = prompt_embeds.shape[1]
|
503 |
+
uncond_input = self.tokenizer(
|
504 |
+
uncond_tokens,
|
505 |
+
padding="max_length",
|
506 |
+
max_length=max_length,
|
507 |
+
truncation=True,
|
508 |
+
return_tensors="pt",
|
509 |
+
)
|
510 |
+
|
511 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
512 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
513 |
+
else:
|
514 |
+
attention_mask = None
|
515 |
+
|
516 |
+
negative_prompt_embeds = self.text_encoder(
|
517 |
+
uncond_input.input_ids.to(device),
|
518 |
+
attention_mask=attention_mask,
|
519 |
+
)
|
520 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
521 |
+
|
522 |
+
if do_classifier_free_guidance:
|
523 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
524 |
+
seq_len = negative_prompt_embeds.shape[1]
|
525 |
+
|
526 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
527 |
+
|
528 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
529 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
530 |
+
|
531 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
532 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
533 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
534 |
+
|
535 |
+
return prompt_embeds, negative_prompt_embeds
|
536 |
+
|
537 |
+
def encode_image(self, image, device, num_images_per_prompt):
|
538 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
539 |
+
|
540 |
+
if not isinstance(image, torch.Tensor):
|
541 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
542 |
+
|
543 |
+
image = image.to(device=device, dtype=dtype)
|
544 |
+
image_embeds = self.image_encoder(image).image_embeds
|
545 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
546 |
+
|
547 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
548 |
+
return image_embeds, uncond_image_embeds
|
549 |
+
|
550 |
+
def run_safety_checker(self, image, device, dtype):
|
551 |
+
if self.safety_checker is None:
|
552 |
+
has_nsfw_concept = None
|
553 |
+
else:
|
554 |
+
if torch.is_tensor(image):
|
555 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
556 |
+
else:
|
557 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
558 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
559 |
+
image, has_nsfw_concept = self.safety_checker(
|
560 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
561 |
+
)
|
562 |
+
return image, has_nsfw_concept
|
563 |
+
|
564 |
+
def decode_latents(self, latents):
|
565 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
566 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
567 |
+
|
568 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
569 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
570 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
571 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
572 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
573 |
+
return image
|
574 |
+
|
575 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
576 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
577 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
578 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
579 |
+
# and should be between [0, 1]
|
580 |
+
|
581 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
582 |
+
extra_step_kwargs = {}
|
583 |
+
if accepts_eta:
|
584 |
+
extra_step_kwargs["eta"] = eta
|
585 |
+
|
586 |
+
# check if the scheduler accepts generator
|
587 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
588 |
+
if accepts_generator:
|
589 |
+
extra_step_kwargs["generator"] = generator
|
590 |
+
return extra_step_kwargs
|
591 |
+
|
592 |
+
def check_inputs(
|
593 |
+
self,
|
594 |
+
prompt,
|
595 |
+
c2ws,
|
596 |
+
num_views,
|
597 |
+
height,
|
598 |
+
width,
|
599 |
+
callback_steps,
|
600 |
+
negative_prompt=None,
|
601 |
+
prompt_embeds=None,
|
602 |
+
negative_prompt_embeds=None,
|
603 |
+
callback_on_step_end_tensor_inputs=None,
|
604 |
+
):
|
605 |
+
if height % 8 != 0 or width % 8 != 0:
|
606 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
607 |
+
|
608 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
609 |
+
raise ValueError(
|
610 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
611 |
+
f" {type(callback_steps)}."
|
612 |
+
)
|
613 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
614 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
615 |
+
):
|
616 |
+
raise ValueError(
|
617 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
618 |
+
)
|
619 |
+
|
620 |
+
if prompt is not None and prompt_embeds is not None:
|
621 |
+
raise ValueError(
|
622 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
623 |
+
" only forward one of the two."
|
624 |
+
)
|
625 |
+
elif prompt is None and prompt_embeds is None:
|
626 |
+
raise ValueError(
|
627 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
628 |
+
)
|
629 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
630 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
631 |
+
|
632 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
633 |
+
raise ValueError(
|
634 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
635 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
636 |
+
)
|
637 |
+
|
638 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
639 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
640 |
+
raise ValueError(
|
641 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
642 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
643 |
+
f" {negative_prompt_embeds.shape}."
|
644 |
+
)
|
645 |
+
|
646 |
+
if c2ws is not None:
|
647 |
+
assert isinstance(c2ws, torch.Tensor)
|
648 |
+
if c2ws.ndim == 3:
|
649 |
+
c2ws = c2ws.unsqueeze(0)
|
650 |
+
assert c2ws.shape[1] == num_views
|
651 |
+
# if c2ws.shape[0] % num_views != 0:
|
652 |
+
# raise ValueError(
|
653 |
+
# f"when `c2ws` is with ndim as 3, the first dim must can be exactly divided by `num_views` which is {num_views}, "
|
654 |
+
# f"but the first dim of `c2ws` is {c2ws.shape[0]}."
|
655 |
+
# )
|
656 |
+
|
657 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
658 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
659 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
660 |
+
raise ValueError(
|
661 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
662 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
663 |
+
)
|
664 |
+
|
665 |
+
if latents is None:
|
666 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
667 |
+
else:
|
668 |
+
latents = latents.to(device)
|
669 |
+
|
670 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
671 |
+
latents = latents * self.scheduler.init_noise_sigma
|
672 |
+
return latents
|
673 |
+
|
674 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
675 |
+
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
|
676 |
+
|
677 |
+
The suffixes after the scaling factors represent the stages where they are being applied.
|
678 |
+
|
679 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
|
680 |
+
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
681 |
+
|
682 |
+
Args:
|
683 |
+
s1 (`float`):
|
684 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
685 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
686 |
+
s2 (`float`):
|
687 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
688 |
+
mitigate "oversmoothing effect" in the enhanced denoising process.
|
689 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
690 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
691 |
+
"""
|
692 |
+
if not hasattr(self, "unet"):
|
693 |
+
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
694 |
+
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
695 |
+
|
696 |
+
def disable_freeu(self):
|
697 |
+
"""Disables the FreeU mechanism if enabled."""
|
698 |
+
self.unet.disable_freeu()
|
699 |
+
|
700 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
701 |
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
702 |
+
"""
|
703 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
704 |
+
|
705 |
+
Args:
|
706 |
+
timesteps (`torch.Tensor`):
|
707 |
+
generate embedding vectors at these timesteps
|
708 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
709 |
+
dimension of the embeddings to generate
|
710 |
+
dtype:
|
711 |
+
data type of the generated embeddings
|
712 |
+
|
713 |
+
Returns:
|
714 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
715 |
+
"""
|
716 |
+
assert len(w.shape) == 1
|
717 |
+
w = w * 1000.0
|
718 |
+
|
719 |
+
half_dim = embedding_dim // 2
|
720 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
721 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
722 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
723 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
724 |
+
if embedding_dim % 2 == 1: # zero pad
|
725 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
726 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
727 |
+
return emb
|
728 |
+
|
729 |
+
@property
|
730 |
+
def guidance_scale(self):
|
731 |
+
return self._guidance_scale
|
732 |
+
|
733 |
+
@property
|
734 |
+
def guidance_rescale(self):
|
735 |
+
return self._guidance_rescale
|
736 |
+
|
737 |
+
@property
|
738 |
+
def clip_skip(self):
|
739 |
+
return self._clip_skip
|
740 |
+
|
741 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
742 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
743 |
+
# corresponds to doing no classifier free guidance.
|
744 |
+
@property
|
745 |
+
def do_classifier_free_guidance(self):
|
746 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
747 |
+
|
748 |
+
@property
|
749 |
+
def cross_attention_kwargs(self):
|
750 |
+
return self._cross_attention_kwargs
|
751 |
+
|
752 |
+
@property
|
753 |
+
def num_timesteps(self):
|
754 |
+
return self._num_timesteps
|
755 |
+
|
756 |
+
@torch.no_grad()
|
757 |
+
# @replace_example_docstring(EXAMPLE_DOC_STRING)
|
758 |
+
def __call__(
|
759 |
+
self,
|
760 |
+
prompt: Union[str, List[str]] = None,
|
761 |
+
c2ws: Optional[torch.FloatTensor] = None,
|
762 |
+
num_views: int = 4,
|
763 |
+
height: Optional[int] = None,
|
764 |
+
width: Optional[int] = None,
|
765 |
+
num_inference_steps: int = 50,
|
766 |
+
timesteps: List[int] = None,
|
767 |
+
guidance_scale: float = 10,
|
768 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
769 |
+
num_images_per_prompt: Optional[int] = 1,
|
770 |
+
eta: float = 0.0,
|
771 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
772 |
+
latents: Optional[torch.FloatTensor] = None,
|
773 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
774 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
775 |
+
# ip_adapter_image: Optional[PipelineImageInput] = None,
|
776 |
+
output_type: Optional[str] = "pil",
|
777 |
+
return_dict: bool = True,
|
778 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
779 |
+
guidance_rescale: float = 0.0,
|
780 |
+
clip_skip: Optional[int] = None,
|
781 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
782 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
783 |
+
**kwargs,
|
784 |
+
):
|
785 |
+
r"""
|
786 |
+
The call function to the pipeline for generation.
|
787 |
+
|
788 |
+
Args:
|
789 |
+
prompt (`str` or `List[str]`, *optional*):
|
790 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
791 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
792 |
+
The height in pixels of the generated image.
|
793 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
794 |
+
The width in pixels of the generated image.
|
795 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
796 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
797 |
+
expense of slower inference.
|
798 |
+
timesteps (`List[int]`, *optional*):
|
799 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
800 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
801 |
+
passed will be used. Must be in descending order.
|
802 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
803 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
804 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
805 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
806 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
807 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
808 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
809 |
+
The number of images to generate per prompt.
|
810 |
+
eta (`float`, *optional*, defaults to 0.0):
|
811 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
812 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
813 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
814 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
815 |
+
generation deterministic.
|
816 |
+
latents (`torch.FloatTensor`, *optional*):
|
817 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
818 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
819 |
+
tensor is generated by sampling using the supplied random `generator`.
|
820 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
821 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
822 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
823 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
824 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
825 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
826 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
827 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
828 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
829 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
830 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
831 |
+
plain tuple.
|
832 |
+
cross_attention_kwargs (`dict`, *optional*):
|
833 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
834 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
835 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
836 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
837 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
838 |
+
using zero terminal SNR.
|
839 |
+
clip_skip (`int`, *optional*):
|
840 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
841 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
842 |
+
callback_on_step_end (`Callable`, *optional*):
|
843 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
844 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
845 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
846 |
+
`callback_on_step_end_tensor_inputs`.
|
847 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
848 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
849 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
850 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
851 |
+
|
852 |
+
Examples:
|
853 |
+
|
854 |
+
Returns:
|
855 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
856 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
857 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
858 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
859 |
+
"not-safe-for-work" (nsfw) content.
|
860 |
+
"""
|
861 |
+
|
862 |
+
callback = kwargs.pop("callback", None)
|
863 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
864 |
+
|
865 |
+
if callback is not None:
|
866 |
+
deprecate(
|
867 |
+
"callback",
|
868 |
+
"1.0.0",
|
869 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
870 |
+
)
|
871 |
+
if callback_steps is not None:
|
872 |
+
deprecate(
|
873 |
+
"callback_steps",
|
874 |
+
"1.0.0",
|
875 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
876 |
+
)
|
877 |
+
|
878 |
+
# 0. Default height and width to unet
|
879 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
880 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
881 |
+
# to deal with lora scaling and other possible forward hooks
|
882 |
+
|
883 |
+
# 1. Check inputs. Raise error if not correct
|
884 |
+
self.check_inputs(
|
885 |
+
prompt,
|
886 |
+
c2ws,
|
887 |
+
num_views,
|
888 |
+
height,
|
889 |
+
width,
|
890 |
+
callback_steps,
|
891 |
+
negative_prompt,
|
892 |
+
prompt_embeds,
|
893 |
+
negative_prompt_embeds,
|
894 |
+
callback_on_step_end_tensor_inputs,
|
895 |
+
)
|
896 |
+
|
897 |
+
self._guidance_scale = guidance_scale
|
898 |
+
self._guidance_rescale = guidance_rescale
|
899 |
+
self._clip_skip = clip_skip
|
900 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
901 |
+
self._num_views = num_views
|
902 |
+
|
903 |
+
# 2. Define call parameters
|
904 |
+
if prompt is not None and isinstance(prompt, str):
|
905 |
+
batch_size = 1
|
906 |
+
elif prompt is not None and isinstance(prompt, list):
|
907 |
+
batch_size = len(prompt)
|
908 |
+
else:
|
909 |
+
batch_size = prompt_embeds.shape[0]
|
910 |
+
|
911 |
+
device = self._execution_device
|
912 |
+
|
913 |
+
# 3. Encode input prompt
|
914 |
+
lora_scale = (
|
915 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
916 |
+
)
|
917 |
+
|
918 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
919 |
+
prompt,
|
920 |
+
device,
|
921 |
+
num_images_per_prompt * num_views,
|
922 |
+
self.do_classifier_free_guidance,
|
923 |
+
negative_prompt,
|
924 |
+
prompt_embeds=prompt_embeds,
|
925 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
926 |
+
lora_scale=lora_scale,
|
927 |
+
clip_skip=self.clip_skip,
|
928 |
+
)
|
929 |
+
|
930 |
+
# For classifier free guidance, we need to do two forward passes.
|
931 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
932 |
+
# to avoid doing two forward passes
|
933 |
+
if self.do_classifier_free_guidance:
|
934 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
935 |
+
|
936 |
+
# 4. Prepare timesteps
|
937 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
938 |
+
|
939 |
+
# 5. Prepare latent variables
|
940 |
+
num_channels_latents = self.unet.config.in_channels
|
941 |
+
latents = self.prepare_latents(
|
942 |
+
batch_size * num_images_per_prompt * num_views,
|
943 |
+
num_channels_latents,
|
944 |
+
height,
|
945 |
+
width,
|
946 |
+
prompt_embeds.dtype,
|
947 |
+
device,
|
948 |
+
generator,
|
949 |
+
latents,
|
950 |
+
)
|
951 |
+
|
952 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
953 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
954 |
+
|
955 |
+
# 6.1 Prepare camera matrix embeddings
|
956 |
+
if c2ws is not None:
|
957 |
+
if c2ws.ndim == 3:
|
958 |
+
c2ws = c2ws.unsqueeze(0)
|
959 |
+
if c2ws.shape[0] != batch_size and c2ws.shape[0] != 1:
|
960 |
+
raise ValueError("Size mismatch between `c2ws` and batch size.")
|
961 |
+
elif c2ws.shape[0] == 1:
|
962 |
+
c2ws = torch.cat([c2ws] * batch_size, dim=0)
|
963 |
+
c2ws = c2ws.repeat_interleave(num_images_per_prompt).reshape(-1, 4, 4).flatten(1, 2)
|
964 |
+
c2ws = c2ws.to(device, dtype=self.camera_proj.dtype)
|
965 |
+
camera_matrix_embeds = self.camera_proj(c2ws)
|
966 |
+
if self.do_classifier_free_guidance:
|
967 |
+
camera_matrix_embeds = torch.cat([camera_matrix_embeds] * 2)
|
968 |
+
# UNet use cross-view attention
|
969 |
+
self._set_unet_self_attn_cross_view_processor(num_views)
|
970 |
+
|
971 |
+
# 6.2 Optionally get Guidance Scale Embedding
|
972 |
+
timestep_cond = None
|
973 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
974 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
975 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
976 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
977 |
+
).to(device=device, dtype=latents.dtype)
|
978 |
+
|
979 |
+
# 7. Denoising loop
|
980 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
981 |
+
self._num_timesteps = len(timesteps)
|
982 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
983 |
+
for i, t in enumerate(timesteps):
|
984 |
+
# expand the latents if we are doing classifier free guidance
|
985 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
986 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
987 |
+
|
988 |
+
# predict the noise residual
|
989 |
+
noise_pred = self.unet(
|
990 |
+
latent_model_input,
|
991 |
+
t,
|
992 |
+
encoder_hidden_states=prompt_embeds,
|
993 |
+
camera_matrix_embeds=camera_matrix_embeds,
|
994 |
+
timestep_cond=timestep_cond,
|
995 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
996 |
+
return_dict=False,
|
997 |
+
)[0]
|
998 |
+
|
999 |
+
# perform guidance
|
1000 |
+
if self.do_classifier_free_guidance:
|
1001 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1002 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1003 |
+
|
1004 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1005 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1006 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1007 |
+
|
1008 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1009 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1010 |
+
|
1011 |
+
if callback_on_step_end is not None:
|
1012 |
+
callback_kwargs = {}
|
1013 |
+
for k in callback_on_step_end_tensor_inputs:
|
1014 |
+
callback_kwargs[k] = locals()[k]
|
1015 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1016 |
+
|
1017 |
+
latents = callback_outputs.pop("latents", latents)
|
1018 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1019 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1020 |
+
|
1021 |
+
# call the callback, if provided
|
1022 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1023 |
+
progress_bar.update()
|
1024 |
+
if callback is not None and i % callback_steps == 0:
|
1025 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1026 |
+
callback(step_idx, t, latents)
|
1027 |
+
|
1028 |
+
if not output_type == "latent":
|
1029 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
1030 |
+
0
|
1031 |
+
]
|
1032 |
+
# image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1033 |
+
else:
|
1034 |
+
image = latents
|
1035 |
+
# has_nsfw_concept = None
|
1036 |
+
|
1037 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=[True]*image.shape[0])
|
1038 |
+
|
1039 |
+
if output_type != "pil":
|
1040 |
+
image = image.reshape(-1, num_views, *image.shape[-3:])
|
1041 |
+
|
1042 |
+
# Offload all models
|
1043 |
+
self.maybe_free_model_hooks()
|
1044 |
+
|
1045 |
+
if not return_dict:
|
1046 |
+
return image
|
1047 |
+
|
1048 |
+
return MVDreamPipelineOutput(images=image)
|