|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
from transformers import is_torch_available |
|
from transformers.testing_utils import require_torch, slow, torch_device |
|
|
|
from .test_configuration_common import ConfigTester |
|
from .test_generation_utils import GenerationTesterMixin |
|
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import BertGenerationConfig, BertGenerationDecoder, BertGenerationEncoder |
|
|
|
|
|
class BertGenerationEncoderTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=13, |
|
seq_length=7, |
|
is_training=True, |
|
use_input_mask=True, |
|
vocab_size=99, |
|
hidden_size=32, |
|
num_hidden_layers=5, |
|
num_attention_heads=4, |
|
intermediate_size=37, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=50, |
|
initializer_range=0.02, |
|
use_labels=True, |
|
scope=None, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.seq_length = seq_length |
|
self.is_training = is_training |
|
self.use_input_mask = use_input_mask |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.initializer_range = initializer_range |
|
self.use_labels = use_labels |
|
self.scope = scope |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
input_mask = None |
|
if self.use_input_mask: |
|
input_mask = random_attention_mask([self.batch_size, self.seq_length]) |
|
|
|
if self.use_labels: |
|
token_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
config = BertGenerationConfig( |
|
vocab_size=self.vocab_size, |
|
hidden_size=self.hidden_size, |
|
num_hidden_layers=self.num_hidden_layers, |
|
num_attention_heads=self.num_attention_heads, |
|
intermediate_size=self.intermediate_size, |
|
hidden_act=self.hidden_act, |
|
hidden_dropout_prob=self.hidden_dropout_prob, |
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob, |
|
max_position_embeddings=self.max_position_embeddings, |
|
is_decoder=False, |
|
initializer_range=self.initializer_range, |
|
) |
|
|
|
return config, input_ids, input_mask, token_labels |
|
|
|
def prepare_config_and_inputs_for_decoder(self): |
|
( |
|
config, |
|
input_ids, |
|
input_mask, |
|
token_labels, |
|
) = self.prepare_config_and_inputs() |
|
|
|
config.is_decoder = True |
|
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) |
|
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) |
|
|
|
return ( |
|
config, |
|
input_ids, |
|
input_mask, |
|
token_labels, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
|
|
def create_and_check_model( |
|
self, |
|
config, |
|
input_ids, |
|
input_mask, |
|
token_labels, |
|
**kwargs, |
|
): |
|
model = BertGenerationEncoder(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(input_ids, attention_mask=input_mask) |
|
result = model(input_ids) |
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
|
|
def create_and_check_model_as_decoder( |
|
self, |
|
config, |
|
input_ids, |
|
input_mask, |
|
token_labels, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
**kwargs, |
|
): |
|
config.add_cross_attention = True |
|
model = BertGenerationEncoder(config=config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model( |
|
input_ids, |
|
attention_mask=input_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
) |
|
result = model( |
|
input_ids, |
|
attention_mask=input_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
) |
|
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) |
|
|
|
def create_and_check_decoder_model_past_large_inputs( |
|
self, |
|
config, |
|
input_ids, |
|
input_mask, |
|
token_labels, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
**kwargs, |
|
): |
|
config.is_decoder = True |
|
config.add_cross_attention = True |
|
model = BertGenerationDecoder(config=config).to(torch_device).eval() |
|
|
|
|
|
outputs = model( |
|
input_ids, |
|
attention_mask=input_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
use_cache=True, |
|
) |
|
past_key_values = outputs.past_key_values |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) |
|
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) |
|
|
|
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) |
|
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) |
|
|
|
output_from_no_past = model( |
|
next_input_ids, |
|
attention_mask=next_attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
output_hidden_states=True, |
|
)["hidden_states"][0] |
|
output_from_past = model( |
|
next_tokens, |
|
attention_mask=next_attention_mask, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_attention_mask, |
|
past_key_values=past_key_values, |
|
output_hidden_states=True, |
|
)["hidden_states"][0] |
|
|
|
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() |
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() |
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() |
|
|
|
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) |
|
|
|
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) |
|
|
|
def create_and_check_for_causal_lm( |
|
self, |
|
config, |
|
input_ids, |
|
input_mask, |
|
token_labels, |
|
*args, |
|
): |
|
model = BertGenerationDecoder(config) |
|
model.to(torch_device) |
|
model.eval() |
|
result = model(input_ids, attention_mask=input_mask, labels=token_labels) |
|
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config, input_ids, input_mask, token_labels = self.prepare_config_and_inputs() |
|
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class BertGenerationEncoderTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): |
|
|
|
all_model_classes = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () |
|
all_generative_model_classes = (BertGenerationDecoder,) if is_torch_available() else () |
|
|
|
def setUp(self): |
|
self.model_tester = BertGenerationEncoderTester(self) |
|
self.config_tester = ConfigTester(self, config_class=BertGenerationConfig, hidden_size=37) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_model(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_model(*config_and_inputs) |
|
|
|
def test_model_as_bert(self): |
|
config, input_ids, input_mask, token_labels = self.model_tester.prepare_config_and_inputs() |
|
config.model_type = "bert" |
|
self.model_tester.create_and_check_model(config, input_ids, input_mask, token_labels) |
|
|
|
def test_model_as_decoder(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() |
|
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) |
|
|
|
def test_decoder_model_past_with_large_inputs(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() |
|
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) |
|
|
|
def test_model_as_decoder_with_default_input_mask(self): |
|
|
|
( |
|
config, |
|
input_ids, |
|
input_mask, |
|
token_labels, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) = self.model_tester.prepare_config_and_inputs_for_decoder() |
|
|
|
input_mask = None |
|
|
|
self.model_tester.create_and_check_model_as_decoder( |
|
config, |
|
input_ids, |
|
input_mask, |
|
token_labels, |
|
encoder_hidden_states, |
|
encoder_attention_mask, |
|
) |
|
|
|
def test_for_causal_lm(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() |
|
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) |
|
|
|
@slow |
|
def test_model_from_pretrained(self): |
|
model = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") |
|
self.assertIsNotNone(model) |
|
|
|
|
|
@require_torch |
|
class BertGenerationEncoderIntegrationTest(unittest.TestCase): |
|
@slow |
|
def test_inference_no_head_absolute_embedding(self): |
|
model = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") |
|
input_ids = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]]) |
|
output = model(input_ids)[0] |
|
expected_shape = torch.Size([1, 8, 1024]) |
|
self.assertEqual(output.shape, expected_shape) |
|
expected_slice = torch.tensor( |
|
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] |
|
) |
|
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) |
|
|
|
|
|
@require_torch |
|
class BertGenerationDecoderIntegrationTest(unittest.TestCase): |
|
@slow |
|
def test_inference_no_head_absolute_embedding(self): |
|
model = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") |
|
input_ids = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]]) |
|
output = model(input_ids)[0] |
|
expected_shape = torch.Size([1, 8, 50358]) |
|
self.assertEqual(output.shape, expected_shape) |
|
expected_slice = torch.tensor( |
|
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] |
|
) |
|
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) |
|
|