|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import tempfile |
|
import unittest |
|
|
|
from transformers import is_torch_available |
|
from transformers.testing_utils import ( |
|
DUMMY_UNKWOWN_IDENTIFIER, |
|
SMALL_MODEL_IDENTIFIER, |
|
require_scatter, |
|
require_torch, |
|
slow, |
|
) |
|
|
|
|
|
if is_torch_available(): |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModel, |
|
AutoModelForCausalLM, |
|
AutoModelForMaskedLM, |
|
AutoModelForPreTraining, |
|
AutoModelForQuestionAnswering, |
|
AutoModelForSeq2SeqLM, |
|
AutoModelForSequenceClassification, |
|
AutoModelForTableQuestionAnswering, |
|
AutoModelForTokenClassification, |
|
AutoModelWithLMHead, |
|
BertConfig, |
|
BertForMaskedLM, |
|
BertForPreTraining, |
|
BertForQuestionAnswering, |
|
BertForSequenceClassification, |
|
BertForTokenClassification, |
|
BertModel, |
|
FunnelBaseModel, |
|
FunnelModel, |
|
GPT2Config, |
|
GPT2LMHeadModel, |
|
RobertaForMaskedLM, |
|
T5Config, |
|
T5ForConditionalGeneration, |
|
TapasConfig, |
|
TapasForQuestionAnswering, |
|
) |
|
from transformers.models.auto.modeling_auto import ( |
|
MODEL_FOR_CAUSAL_LM_MAPPING, |
|
MODEL_FOR_MASKED_LM_MAPPING, |
|
MODEL_FOR_PRETRAINING_MAPPING, |
|
MODEL_FOR_QUESTION_ANSWERING_MAPPING, |
|
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, |
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, |
|
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING, |
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, |
|
MODEL_MAPPING, |
|
MODEL_WITH_LM_HEAD_MAPPING, |
|
) |
|
from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST |
|
from transformers.models.gpt2.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST |
|
from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST |
|
from transformers.models.tapas.modeling_tapas import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST |
|
|
|
|
|
@require_torch |
|
class AutoModelTest(unittest.TestCase): |
|
@slow |
|
def test_model_from_pretrained(self): |
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = AutoModel.from_pretrained(model_name) |
|
model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertModel) |
|
for value in loading_info.values(): |
|
self.assertEqual(len(value), 0) |
|
|
|
@slow |
|
def test_model_for_pretraining_from_pretrained(self): |
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = AutoModelForPreTraining.from_pretrained(model_name) |
|
model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForPreTraining) |
|
|
|
missing_keys = loading_info.pop("missing_keys") |
|
self.assertListEqual(["cls.predictions.decoder.bias"], missing_keys) |
|
for key, value in loading_info.items(): |
|
self.assertEqual(len(value), 0) |
|
|
|
@slow |
|
def test_lmhead_model_from_pretrained(self): |
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = AutoModelWithLMHead.from_pretrained(model_name) |
|
model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForMaskedLM) |
|
|
|
@slow |
|
def test_model_for_causal_lm(self): |
|
for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, GPT2Config) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, GPT2LMHeadModel) |
|
|
|
@slow |
|
def test_model_for_masked_lm(self): |
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = AutoModelForMaskedLM.from_pretrained(model_name) |
|
model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForMaskedLM) |
|
|
|
@slow |
|
def test_model_for_encoder_decoder_lm(self): |
|
for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, T5Config) |
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) |
|
model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, T5ForConditionalGeneration) |
|
|
|
@slow |
|
def test_sequence_classification_model_from_pretrained(self): |
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
model, loading_info = AutoModelForSequenceClassification.from_pretrained( |
|
model_name, output_loading_info=True |
|
) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForSequenceClassification) |
|
|
|
@slow |
|
def test_question_answering_model_from_pretrained(self): |
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForQuestionAnswering) |
|
|
|
@slow |
|
@require_scatter |
|
def test_table_question_answering_model_from_pretrained(self): |
|
for model_name in TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, TapasConfig) |
|
|
|
model = AutoModelForTableQuestionAnswering.from_pretrained(model_name) |
|
model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained( |
|
model_name, output_loading_info=True |
|
) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, TapasForQuestionAnswering) |
|
|
|
@slow |
|
def test_token_classification_model_from_pretrained(self): |
|
for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: |
|
config = AutoConfig.from_pretrained(model_name) |
|
self.assertIsNotNone(config) |
|
self.assertIsInstance(config, BertConfig) |
|
|
|
model = AutoModelForTokenClassification.from_pretrained(model_name) |
|
model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True) |
|
self.assertIsNotNone(model) |
|
self.assertIsInstance(model, BertForTokenClassification) |
|
|
|
def test_from_pretrained_identifier(self): |
|
model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER) |
|
self.assertIsInstance(model, BertForMaskedLM) |
|
self.assertEqual(model.num_parameters(), 14410) |
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410) |
|
|
|
def test_from_identifier_from_model_type(self): |
|
model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER) |
|
self.assertIsInstance(model, RobertaForMaskedLM) |
|
self.assertEqual(model.num_parameters(), 14410) |
|
self.assertEqual(model.num_parameters(only_trainable=True), 14410) |
|
|
|
def test_from_pretrained_with_tuple_values(self): |
|
|
|
model = AutoModel.from_pretrained("sgugger/funnel-random-tiny") |
|
self.assertIsInstance(model, FunnelModel) |
|
|
|
config = copy.deepcopy(model.config) |
|
config.architectures = ["FunnelBaseModel"] |
|
model = AutoModel.from_config(config) |
|
self.assertIsInstance(model, FunnelBaseModel) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
model.save_pretrained(tmp_dir) |
|
model = AutoModel.from_pretrained(tmp_dir) |
|
self.assertIsInstance(model, FunnelBaseModel) |
|
|
|
def test_parents_and_children_in_mappings(self): |
|
|
|
|
|
|
|
mappings = ( |
|
MODEL_MAPPING, |
|
MODEL_FOR_PRETRAINING_MAPPING, |
|
MODEL_FOR_QUESTION_ANSWERING_MAPPING, |
|
MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING, |
|
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, |
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, |
|
MODEL_WITH_LM_HEAD_MAPPING, |
|
MODEL_FOR_CAUSAL_LM_MAPPING, |
|
MODEL_FOR_MASKED_LM_MAPPING, |
|
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, |
|
) |
|
|
|
for mapping in mappings: |
|
mapping = tuple(mapping.items()) |
|
for index, (child_config, child_model) in enumerate(mapping[1:]): |
|
for parent_config, parent_model in mapping[: index + 1]: |
|
assert not issubclass( |
|
child_config, parent_config |
|
), f"{child_config.__name__} is child of {parent_config.__name__}" |
|
|
|
|
|
if not isinstance(child_model, (list, tuple)): |
|
child_model = (child_model,) |
|
if not isinstance(parent_model, (list, tuple)): |
|
parent_model = (parent_model,) |
|
|
|
for child, parent in [(a, b) for a in child_model for b in parent_model]: |
|
assert not issubclass(child, parent), f"{child.__name__} is child of {parent.__name__}" |
|
|