|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
|
|
from transformers.file_utils import is_torch_available, is_vision_available |
|
from transformers.testing_utils import require_torch, require_vision |
|
|
|
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from transformers import CLIPFeatureExtractor |
|
|
|
|
|
class CLIPFeatureExtractionTester(unittest.TestCase): |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=7, |
|
num_channels=3, |
|
image_size=18, |
|
min_resolution=30, |
|
max_resolution=400, |
|
do_resize=True, |
|
size=20, |
|
do_center_crop=True, |
|
crop_size=18, |
|
do_normalize=True, |
|
image_mean=[0.48145466, 0.4578275, 0.40821073], |
|
image_std=[0.26862954, 0.26130258, 0.27577711], |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.num_channels = num_channels |
|
self.image_size = image_size |
|
self.min_resolution = min_resolution |
|
self.max_resolution = max_resolution |
|
self.do_resize = do_resize |
|
self.size = size |
|
self.do_center_crop = do_center_crop |
|
self.crop_size = crop_size |
|
self.do_normalize = do_normalize |
|
self.image_mean = image_mean |
|
self.image_std = image_std |
|
|
|
def prepare_feat_extract_dict(self): |
|
return { |
|
"do_resize": self.do_resize, |
|
"size": self.size, |
|
"do_center_crop": self.do_center_crop, |
|
"crop_size": self.crop_size, |
|
"do_normalize": self.do_normalize, |
|
"image_mean": self.image_mean, |
|
"image_std": self.image_std, |
|
} |
|
|
|
def prepare_inputs(self, equal_resolution=False, numpify=False, torchify=False): |
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, |
|
or a list of PyTorch tensors if one specifies torchify=True. |
|
""" |
|
|
|
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" |
|
|
|
if equal_resolution: |
|
image_inputs = [] |
|
for i in range(self.batch_size): |
|
image_inputs.append( |
|
np.random.randint( |
|
255, size=(self.num_channels, self.max_resolution, self.max_resolution), dtype=np.uint8 |
|
) |
|
) |
|
else: |
|
image_inputs = [] |
|
for i in range(self.batch_size): |
|
width, height = np.random.choice(np.arange(self.min_resolution, self.max_resolution), 2) |
|
image_inputs.append(np.random.randint(255, size=(self.num_channels, width, height), dtype=np.uint8)) |
|
|
|
if not numpify and not torchify: |
|
|
|
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] |
|
|
|
if torchify: |
|
image_inputs = [torch.from_numpy(x) for x in image_inputs] |
|
|
|
return image_inputs |
|
|
|
|
|
@require_torch |
|
@require_vision |
|
class CLIPFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase): |
|
|
|
feature_extraction_class = CLIPFeatureExtractor if is_vision_available() else None |
|
|
|
def setUp(self): |
|
self.feature_extract_tester = CLIPFeatureExtractionTester(self) |
|
|
|
@property |
|
def feat_extract_dict(self): |
|
return self.feature_extract_tester.prepare_feat_extract_dict() |
|
|
|
def test_feat_extract_properties(self): |
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) |
|
self.assertTrue(hasattr(feature_extractor, "do_resize")) |
|
self.assertTrue(hasattr(feature_extractor, "size")) |
|
self.assertTrue(hasattr(feature_extractor, "do_center_crop")) |
|
self.assertTrue(hasattr(feature_extractor, "center_crop")) |
|
self.assertTrue(hasattr(feature_extractor, "do_normalize")) |
|
self.assertTrue(hasattr(feature_extractor, "image_mean")) |
|
self.assertTrue(hasattr(feature_extractor, "image_std")) |
|
|
|
def test_batch_feature(self): |
|
pass |
|
|
|
def test_call_pil(self): |
|
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) |
|
|
|
image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False) |
|
for image in image_inputs: |
|
self.assertIsInstance(image, Image.Image) |
|
|
|
|
|
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values |
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
1, |
|
self.feature_extract_tester.num_channels, |
|
self.feature_extract_tester.crop_size, |
|
self.feature_extract_tester.crop_size, |
|
), |
|
) |
|
|
|
|
|
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values |
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
self.feature_extract_tester.batch_size, |
|
self.feature_extract_tester.num_channels, |
|
self.feature_extract_tester.crop_size, |
|
self.feature_extract_tester.crop_size, |
|
), |
|
) |
|
|
|
def test_call_numpy(self): |
|
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) |
|
|
|
image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False, numpify=True) |
|
for image in image_inputs: |
|
self.assertIsInstance(image, np.ndarray) |
|
|
|
|
|
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values |
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
1, |
|
self.feature_extract_tester.num_channels, |
|
self.feature_extract_tester.crop_size, |
|
self.feature_extract_tester.crop_size, |
|
), |
|
) |
|
|
|
|
|
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values |
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
self.feature_extract_tester.batch_size, |
|
self.feature_extract_tester.num_channels, |
|
self.feature_extract_tester.crop_size, |
|
self.feature_extract_tester.crop_size, |
|
), |
|
) |
|
|
|
def test_call_pytorch(self): |
|
|
|
feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) |
|
|
|
image_inputs = self.feature_extract_tester.prepare_inputs(equal_resolution=False, torchify=True) |
|
for image in image_inputs: |
|
self.assertIsInstance(image, torch.Tensor) |
|
|
|
|
|
encoded_images = feature_extractor(image_inputs[0], return_tensors="pt").pixel_values |
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
1, |
|
self.feature_extract_tester.num_channels, |
|
self.feature_extract_tester.crop_size, |
|
self.feature_extract_tester.crop_size, |
|
), |
|
) |
|
|
|
|
|
encoded_images = feature_extractor(image_inputs, return_tensors="pt").pixel_values |
|
self.assertEqual( |
|
encoded_images.shape, |
|
( |
|
self.feature_extract_tester.batch_size, |
|
self.feature_extract_tester.num_channels, |
|
self.feature_extract_tester.crop_size, |
|
self.feature_extract_tester.crop_size, |
|
), |
|
) |
|
|