|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import tempfile |
|
import unittest |
|
from pathlib import Path |
|
|
|
from transformers import AutoConfig, is_torch_available |
|
from transformers.testing_utils import require_torch, torch_device |
|
|
|
|
|
if is_torch_available(): |
|
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments |
|
|
|
|
|
@require_torch |
|
class BenchmarkTest(unittest.TestCase): |
|
def check_results_dict_not_empty(self, results): |
|
for model_result in results.values(): |
|
for batch_size, sequence_length in zip(model_result["bs"], model_result["ss"]): |
|
result = model_result["result"][batch_size][sequence_length] |
|
self.assertIsNotNone(result) |
|
|
|
def test_inference_no_configs(self): |
|
MODEL_ID = "sshleifer/tiny-gpt2" |
|
benchmark_args = PyTorchBenchmarkArguments( |
|
models=[MODEL_ID], |
|
training=False, |
|
inference=True, |
|
sequence_lengths=[8], |
|
batch_sizes=[1], |
|
multi_process=False, |
|
) |
|
benchmark = PyTorchBenchmark(benchmark_args) |
|
results = benchmark.run() |
|
self.check_results_dict_not_empty(results.time_inference_result) |
|
self.check_results_dict_not_empty(results.memory_inference_result) |
|
|
|
def test_inference_no_configs_only_pretrain(self): |
|
MODEL_ID = "sshleifer/tiny-distilbert-base-uncased-finetuned-sst-2-english" |
|
benchmark_args = PyTorchBenchmarkArguments( |
|
models=[MODEL_ID], |
|
training=False, |
|
inference=True, |
|
sequence_lengths=[8], |
|
batch_sizes=[1], |
|
multi_process=False, |
|
only_pretrain_model=True, |
|
) |
|
benchmark = PyTorchBenchmark(benchmark_args) |
|
results = benchmark.run() |
|
self.check_results_dict_not_empty(results.time_inference_result) |
|
self.check_results_dict_not_empty(results.memory_inference_result) |
|
|
|
def test_inference_torchscript(self): |
|
MODEL_ID = "sshleifer/tiny-gpt2" |
|
benchmark_args = PyTorchBenchmarkArguments( |
|
models=[MODEL_ID], |
|
training=False, |
|
inference=True, |
|
torchscript=True, |
|
sequence_lengths=[8], |
|
batch_sizes=[1], |
|
multi_process=False, |
|
) |
|
benchmark = PyTorchBenchmark(benchmark_args) |
|
results = benchmark.run() |
|
self.check_results_dict_not_empty(results.time_inference_result) |
|
self.check_results_dict_not_empty(results.memory_inference_result) |
|
|
|
@unittest.skipIf(torch_device == "cpu", "Cant do half precision") |
|
def test_inference_fp16(self): |
|
MODEL_ID = "sshleifer/tiny-gpt2" |
|
benchmark_args = PyTorchBenchmarkArguments( |
|
models=[MODEL_ID], |
|
training=False, |
|
inference=True, |
|
fp16=True, |
|
sequence_lengths=[8], |
|
batch_sizes=[1], |
|
multi_process=False, |
|
) |
|
benchmark = PyTorchBenchmark(benchmark_args) |
|
results = benchmark.run() |
|
self.check_results_dict_not_empty(results.time_inference_result) |
|
self.check_results_dict_not_empty(results.memory_inference_result) |
|
|
|
def test_inference_no_model_no_architectures(self): |
|
MODEL_ID = "sshleifer/tiny-gpt2" |
|
config = AutoConfig.from_pretrained(MODEL_ID) |
|
|
|
config.architectures = None |
|
benchmark_args = PyTorchBenchmarkArguments( |
|
models=[MODEL_ID], |
|
training=True, |
|
inference=True, |
|
sequence_lengths=[8], |
|
batch_sizes=[1], |
|
multi_process=False, |
|
) |
|
benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) |
|
results = benchmark.run() |
|
self.check_results_dict_not_empty(results.time_inference_result) |
|
self.check_results_dict_not_empty(results.memory_inference_result) |
|
|
|
def test_train_no_configs(self): |
|
MODEL_ID = "sshleifer/tiny-gpt2" |
|
benchmark_args = PyTorchBenchmarkArguments( |
|
models=[MODEL_ID], |
|
training=True, |
|
inference=False, |
|
sequence_lengths=[8], |
|
batch_sizes=[1], |
|
multi_process=False, |
|
) |
|
benchmark = PyTorchBenchmark(benchmark_args) |
|
results = benchmark.run() |
|
self.check_results_dict_not_empty(results.time_train_result) |
|
self.check_results_dict_not_empty(results.memory_train_result) |
|
|
|
@unittest.skipIf(torch_device == "cpu", "Can't do half precision") |
|
def test_train_no_configs_fp16(self): |
|
MODEL_ID = "sshleifer/tiny-gpt2" |
|
benchmark_args = PyTorchBenchmarkArguments( |
|
models=[MODEL_ID], |
|
training=True, |
|
inference=False, |
|
sequence_lengths=[8], |
|
batch_sizes=[1], |
|
fp16=True, |
|
multi_process=False, |
|
) |
|
benchmark = PyTorchBenchmark(benchmark_args) |
|
results = benchmark.run() |
|
self.check_results_dict_not_empty(results.time_train_result) |
|
self.check_results_dict_not_empty(results.memory_train_result) |
|
|
|
def test_inference_with_configs(self): |
|
MODEL_ID = "sshleifer/tiny-gpt2" |
|
config = AutoConfig.from_pretrained(MODEL_ID) |
|
benchmark_args = PyTorchBenchmarkArguments( |
|
models=[MODEL_ID], |
|
training=False, |
|
inference=True, |
|
sequence_lengths=[8], |
|
batch_sizes=[1], |
|
multi_process=False, |
|
) |
|
benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) |
|
results = benchmark.run() |
|
self.check_results_dict_not_empty(results.time_inference_result) |
|
self.check_results_dict_not_empty(results.memory_inference_result) |
|
|
|
def test_inference_encoder_decoder_with_configs(self): |
|
MODEL_ID = "sshleifer/tinier_bart" |
|
config = AutoConfig.from_pretrained(MODEL_ID) |
|
benchmark_args = PyTorchBenchmarkArguments( |
|
models=[MODEL_ID], |
|
training=False, |
|
inference=True, |
|
sequence_lengths=[8], |
|
batch_sizes=[1], |
|
multi_process=False, |
|
) |
|
benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) |
|
results = benchmark.run() |
|
self.check_results_dict_not_empty(results.time_inference_result) |
|
self.check_results_dict_not_empty(results.memory_inference_result) |
|
|
|
def test_train_with_configs(self): |
|
MODEL_ID = "sshleifer/tiny-gpt2" |
|
config = AutoConfig.from_pretrained(MODEL_ID) |
|
benchmark_args = PyTorchBenchmarkArguments( |
|
models=[MODEL_ID], |
|
training=True, |
|
inference=False, |
|
sequence_lengths=[8], |
|
batch_sizes=[1], |
|
multi_process=False, |
|
) |
|
benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) |
|
results = benchmark.run() |
|
self.check_results_dict_not_empty(results.time_train_result) |
|
self.check_results_dict_not_empty(results.memory_train_result) |
|
|
|
def test_train_encoder_decoder_with_configs(self): |
|
MODEL_ID = "sshleifer/tinier_bart" |
|
config = AutoConfig.from_pretrained(MODEL_ID) |
|
benchmark_args = PyTorchBenchmarkArguments( |
|
models=[MODEL_ID], |
|
training=True, |
|
inference=True, |
|
sequence_lengths=[8], |
|
batch_sizes=[1], |
|
multi_process=False, |
|
) |
|
benchmark = PyTorchBenchmark(benchmark_args, configs=[config]) |
|
results = benchmark.run() |
|
self.check_results_dict_not_empty(results.time_train_result) |
|
self.check_results_dict_not_empty(results.memory_train_result) |
|
|
|
def test_save_csv_files(self): |
|
MODEL_ID = "sshleifer/tiny-gpt2" |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
benchmark_args = PyTorchBenchmarkArguments( |
|
models=[MODEL_ID], |
|
training=True, |
|
inference=True, |
|
save_to_csv=True, |
|
sequence_lengths=[8], |
|
batch_sizes=[1], |
|
inference_time_csv_file=os.path.join(tmp_dir, "inf_time.csv"), |
|
train_memory_csv_file=os.path.join(tmp_dir, "train_mem.csv"), |
|
inference_memory_csv_file=os.path.join(tmp_dir, "inf_mem.csv"), |
|
train_time_csv_file=os.path.join(tmp_dir, "train_time.csv"), |
|
env_info_csv_file=os.path.join(tmp_dir, "env.csv"), |
|
multi_process=False, |
|
) |
|
benchmark = PyTorchBenchmark(benchmark_args) |
|
benchmark.run() |
|
self.assertTrue(Path(os.path.join(tmp_dir, "inf_time.csv")).exists()) |
|
self.assertTrue(Path(os.path.join(tmp_dir, "train_time.csv")).exists()) |
|
self.assertTrue(Path(os.path.join(tmp_dir, "inf_mem.csv")).exists()) |
|
self.assertTrue(Path(os.path.join(tmp_dir, "train_mem.csv")).exists()) |
|
self.assertTrue(Path(os.path.join(tmp_dir, "env.csv")).exists()) |
|
|
|
def test_trace_memory(self): |
|
MODEL_ID = "sshleifer/tiny-gpt2" |
|
|
|
def _check_summary_is_not_empty(summary): |
|
self.assertTrue(hasattr(summary, "sequential")) |
|
self.assertTrue(hasattr(summary, "cumulative")) |
|
self.assertTrue(hasattr(summary, "current")) |
|
self.assertTrue(hasattr(summary, "total")) |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
benchmark_args = PyTorchBenchmarkArguments( |
|
models=[MODEL_ID], |
|
training=True, |
|
inference=True, |
|
sequence_lengths=[8], |
|
batch_sizes=[1], |
|
log_filename=os.path.join(tmp_dir, "log.txt"), |
|
log_print=True, |
|
trace_memory_line_by_line=True, |
|
multi_process=False, |
|
) |
|
benchmark = PyTorchBenchmark(benchmark_args) |
|
result = benchmark.run() |
|
_check_summary_is_not_empty(result.inference_summary) |
|
_check_summary_is_not_empty(result.train_summary) |
|
self.assertTrue(Path(os.path.join(tmp_dir, "log.txt")).exists()) |
|
|