|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Testing suite for the PyTorch Blenderbot model. """ |
|
|
|
import tempfile |
|
import unittest |
|
|
|
from transformers import is_torch_available |
|
from transformers.file_utils import cached_property |
|
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device |
|
|
|
from .test_configuration_common import ConfigTester |
|
from .test_generation_utils import GenerationTesterMixin |
|
from .test_modeling_common import ModelTesterMixin, ids_tensor |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotTokenizer |
|
from transformers.models.blenderbot.modeling_blenderbot import ( |
|
BlenderbotDecoder, |
|
BlenderbotEncoder, |
|
BlenderbotForCausalLM, |
|
) |
|
|
|
|
|
def prepare_blenderbot_inputs_dict( |
|
config, |
|
input_ids, |
|
decoder_input_ids, |
|
attention_mask=None, |
|
decoder_attention_mask=None, |
|
head_mask=None, |
|
decoder_head_mask=None, |
|
cross_attn_head_mask=None, |
|
): |
|
if attention_mask is None: |
|
attention_mask = input_ids.ne(config.pad_token_id) |
|
if decoder_attention_mask is None: |
|
decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) |
|
if head_mask is None: |
|
head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) |
|
if decoder_head_mask is None: |
|
decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) |
|
if cross_attn_head_mask is None: |
|
cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) |
|
return { |
|
"input_ids": input_ids, |
|
"decoder_input_ids": decoder_input_ids, |
|
"attention_mask": attention_mask, |
|
"decoder_attention_mask": attention_mask, |
|
"head_mask": head_mask, |
|
"decoder_head_mask": decoder_head_mask, |
|
"cross_attn_head_mask": cross_attn_head_mask, |
|
} |
|
|
|
|
|
@require_torch |
|
class BlenderbotModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
batch_size=13, |
|
seq_length=7, |
|
is_training=True, |
|
use_labels=False, |
|
vocab_size=99, |
|
hidden_size=16, |
|
num_hidden_layers=2, |
|
num_attention_heads=4, |
|
intermediate_size=4, |
|
hidden_act="gelu", |
|
hidden_dropout_prob=0.1, |
|
attention_probs_dropout_prob=0.1, |
|
max_position_embeddings=20, |
|
eos_token_id=2, |
|
pad_token_id=1, |
|
bos_token_id=0, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.seq_length = seq_length |
|
self.is_training = is_training |
|
self.use_labels = use_labels |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.intermediate_size = intermediate_size |
|
self.hidden_act = hidden_act |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.max_position_embeddings = max_position_embeddings |
|
self.eos_token_id = eos_token_id |
|
self.pad_token_id = pad_token_id |
|
self.bos_token_id = bos_token_id |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp( |
|
3, |
|
) |
|
input_ids[:, -1] = self.eos_token_id |
|
|
|
decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) |
|
|
|
config = BlenderbotConfig( |
|
vocab_size=self.vocab_size, |
|
d_model=self.hidden_size, |
|
encoder_layers=self.num_hidden_layers, |
|
decoder_layers=self.num_hidden_layers, |
|
encoder_attention_heads=self.num_attention_heads, |
|
decoder_attention_heads=self.num_attention_heads, |
|
encoder_ffn_dim=self.intermediate_size, |
|
decoder_ffn_dim=self.intermediate_size, |
|
dropout=self.hidden_dropout_prob, |
|
attention_dropout=self.attention_probs_dropout_prob, |
|
max_position_embeddings=self.max_position_embeddings, |
|
eos_token_id=self.eos_token_id, |
|
bos_token_id=self.bos_token_id, |
|
pad_token_id=self.pad_token_id, |
|
) |
|
inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids) |
|
return config, inputs_dict |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config, inputs_dict = self.prepare_config_and_inputs() |
|
return config, inputs_dict |
|
|
|
def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): |
|
model = BlenderbotModel(config=config).get_decoder().to(torch_device).eval() |
|
input_ids = inputs_dict["input_ids"] |
|
attention_mask = inputs_dict["attention_mask"] |
|
head_mask = inputs_dict["head_mask"] |
|
|
|
|
|
outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) |
|
|
|
output, past_key_values = outputs.to_tuple() |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) |
|
next_attn_mask = ids_tensor((self.batch_size, 3), 2) |
|
|
|
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) |
|
next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) |
|
|
|
output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] |
|
output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ |
|
"last_hidden_state" |
|
] |
|
|
|
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() |
|
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() |
|
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() |
|
|
|
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) |
|
|
|
|
|
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) |
|
|
|
def check_encoder_decoder_model_standalone(self, config, inputs_dict): |
|
model = BlenderbotModel(config=config).to(torch_device).eval() |
|
outputs = model(**inputs_dict) |
|
|
|
encoder_last_hidden_state = outputs.encoder_last_hidden_state |
|
last_hidden_state = outputs.last_hidden_state |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
encoder = model.get_encoder() |
|
encoder.save_pretrained(tmpdirname) |
|
encoder = BlenderbotEncoder.from_pretrained(tmpdirname).to(torch_device) |
|
|
|
encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ |
|
0 |
|
] |
|
|
|
self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
decoder = model.get_decoder() |
|
decoder.save_pretrained(tmpdirname) |
|
decoder = BlenderbotDecoder.from_pretrained(tmpdirname).to(torch_device) |
|
|
|
last_hidden_state_2 = decoder( |
|
input_ids=inputs_dict["decoder_input_ids"], |
|
attention_mask=inputs_dict["decoder_attention_mask"], |
|
encoder_hidden_states=encoder_last_hidden_state, |
|
encoder_attention_mask=inputs_dict["attention_mask"], |
|
)[0] |
|
|
|
self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) |
|
|
|
|
|
@require_torch |
|
class BlenderbotModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): |
|
all_model_classes = (BlenderbotModel, BlenderbotForConditionalGeneration) if is_torch_available() else () |
|
all_generative_model_classes = (BlenderbotForConditionalGeneration,) if is_torch_available() else () |
|
is_encoder_decoder = True |
|
test_pruning = False |
|
test_missing_keys = False |
|
|
|
def setUp(self): |
|
self.model_tester = BlenderbotModelTester(self) |
|
self.config_tester = ConfigTester(self, config_class=BlenderbotConfig) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_save_load_strict(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs() |
|
for model_class in self.all_model_classes: |
|
model = model_class(config) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_pretrained(tmpdirname) |
|
model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) |
|
self.assertEqual(info["missing_keys"], []) |
|
|
|
def test_decoder_model_past_with_large_inputs(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) |
|
|
|
def test_encoder_decoder_model_standalone(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() |
|
self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) |
|
|
|
def test_generate_fp16(self): |
|
config, input_dict = self.model_tester.prepare_config_and_inputs() |
|
input_ids = input_dict["input_ids"] |
|
attention_mask = input_ids.ne(1).to(torch_device) |
|
model = BlenderbotForConditionalGeneration(config).eval().to(torch_device) |
|
if torch_device == "cuda": |
|
model.half() |
|
model.generate(input_ids, attention_mask=attention_mask) |
|
model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) |
|
|
|
|
|
def assert_tensors_close(a, b, atol=1e-12, prefix=""): |
|
"""If tensors have different shapes, different values or a and b are not both tensors, raise a nice Assertion error.""" |
|
if a is None and b is None: |
|
return True |
|
try: |
|
if torch.allclose(a, b, atol=atol): |
|
return True |
|
raise |
|
except Exception: |
|
pct_different = (torch.gt((a - b).abs(), atol)).float().mean().item() |
|
if a.numel() > 100: |
|
msg = f"tensor values are {pct_different:.1%} percent different." |
|
else: |
|
msg = f"{a} != {b}" |
|
if prefix: |
|
msg = prefix + ": " + msg |
|
raise AssertionError(msg) |
|
|
|
|
|
@unittest.skipUnless(torch_device != "cpu", "3B test too slow on CPU.") |
|
@require_torch |
|
@require_sentencepiece |
|
@require_tokenizers |
|
class Blenderbot3BIntegrationTests(unittest.TestCase): |
|
ckpt = "facebook/blenderbot-3B" |
|
|
|
@cached_property |
|
def tokenizer(self): |
|
return BlenderbotTokenizer.from_pretrained(self.ckpt) |
|
|
|
@slow |
|
def test_generation_from_short_input_same_as_parlai_3B(self): |
|
FASTER_GEN_KWARGS = dict(num_beams=1, early_stopping=True, min_length=15, max_length=25) |
|
TOK_DECODE_KW = dict(skip_special_tokens=True, clean_up_tokenization_spaces=True) |
|
|
|
torch.cuda.empty_cache() |
|
model = BlenderbotForConditionalGeneration.from_pretrained(self.ckpt).half().to(torch_device) |
|
|
|
src_text = ["Sam"] |
|
model_inputs = self.tokenizer(src_text, return_tensors="pt").to(torch_device) |
|
|
|
generated_utterances = model.generate(**model_inputs, **FASTER_GEN_KWARGS) |
|
tgt_text = 'Sam is a great name. It means "sun" in Gaelic.' |
|
|
|
generated_txt = self.tokenizer.batch_decode(generated_utterances, **TOK_DECODE_KW) |
|
assert generated_txt[0].strip() == tgt_text |
|
|
|
src_text = "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like i'm going to throw up.\nand why is that?" |
|
|
|
model_inputs = self.tokenizer([src_text], return_tensors="pt").to(torch_device) |
|
|
|
generated_ids = model.generate(**model_inputs, **FASTER_GEN_KWARGS)[0] |
|
reply = self.tokenizer.decode(generated_ids, **TOK_DECODE_KW) |
|
|
|
assert "I think it's because we are so worried about what people think of us." == reply.strip() |
|
del model |
|
|
|
|
|
class BlenderbotStandaloneDecoderModelTester: |
|
def __init__( |
|
self, |
|
parent, |
|
vocab_size=99, |
|
batch_size=13, |
|
d_model=16, |
|
decoder_seq_length=7, |
|
is_training=True, |
|
is_decoder=True, |
|
use_attention_mask=True, |
|
use_cache=False, |
|
use_labels=True, |
|
decoder_start_token_id=2, |
|
decoder_ffn_dim=32, |
|
decoder_layers=4, |
|
encoder_attention_heads=4, |
|
decoder_attention_heads=4, |
|
max_position_embeddings=30, |
|
is_encoder_decoder=False, |
|
encoder_no_repeat_ngram_size=0, |
|
pad_token_id=0, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
scope=None, |
|
): |
|
self.parent = parent |
|
self.batch_size = batch_size |
|
self.decoder_seq_length = decoder_seq_length |
|
|
|
self.seq_length = self.decoder_seq_length |
|
self.is_training = is_training |
|
self.use_attention_mask = use_attention_mask |
|
self.use_labels = use_labels |
|
|
|
self.vocab_size = vocab_size |
|
self.d_model = d_model |
|
self.hidden_size = d_model |
|
self.num_hidden_layers = decoder_layers |
|
self.decoder_layers = decoder_layers |
|
self.decoder_ffn_dim = decoder_ffn_dim |
|
self.encoder_attention_heads = encoder_attention_heads |
|
self.decoder_attention_heads = decoder_attention_heads |
|
self.num_attention_heads = decoder_attention_heads |
|
self.eos_token_id = eos_token_id |
|
self.bos_token_id = bos_token_id |
|
self.pad_token_id = pad_token_id |
|
self.decoder_start_token_id = decoder_start_token_id |
|
self.use_cache = use_cache |
|
self.max_position_embeddings = max_position_embeddings |
|
self.is_encoder_decoder = is_encoder_decoder |
|
self.encoder_no_repeat_ngram_size = encoder_no_repeat_ngram_size |
|
|
|
self.scope = None |
|
self.decoder_key_length = decoder_seq_length |
|
self.base_model_out_len = 2 |
|
self.decoder_attention_idx = 1 |
|
|
|
def prepare_config_and_inputs(self): |
|
input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) |
|
|
|
attention_mask = None |
|
if self.use_attention_mask: |
|
attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) |
|
|
|
lm_labels = None |
|
if self.use_labels: |
|
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) |
|
|
|
config = BlenderbotConfig( |
|
vocab_size=self.vocab_size, |
|
d_model=self.d_model, |
|
decoder_layers=self.decoder_layers, |
|
decoder_ffn_dim=self.decoder_ffn_dim, |
|
encoder_attention_heads=self.encoder_attention_heads, |
|
decoder_attention_heads=self.decoder_attention_heads, |
|
eos_token_id=self.eos_token_id, |
|
bos_token_id=self.bos_token_id, |
|
use_cache=self.use_cache, |
|
pad_token_id=self.pad_token_id, |
|
decoder_start_token_id=self.decoder_start_token_id, |
|
max_position_embeddings=self.max_position_embeddings, |
|
is_encoder_decoder=self.is_encoder_decoder, |
|
encoder_no_repeat_ngram_size=self.encoder_no_repeat_ngram_size, |
|
) |
|
|
|
return ( |
|
config, |
|
input_ids, |
|
attention_mask, |
|
lm_labels, |
|
) |
|
|
|
def create_and_check_decoder_model_past( |
|
self, |
|
config, |
|
input_ids, |
|
attention_mask, |
|
lm_labels, |
|
): |
|
config.use_cache = True |
|
model = BlenderbotDecoder(config=config).to(torch_device).eval() |
|
|
|
outputs = model(input_ids, use_cache=True) |
|
outputs_use_cache_conf = model(input_ids) |
|
outputs_no_past = model(input_ids, use_cache=False) |
|
|
|
self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) |
|
self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) |
|
|
|
past_key_values = outputs["past_key_values"] |
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) |
|
|
|
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) |
|
|
|
output_from_no_past = model(next_input_ids)["last_hidden_state"] |
|
output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"] |
|
|
|
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() |
|
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() |
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() |
|
|
|
|
|
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) |
|
|
|
def create_and_check_decoder_model_attention_mask_past( |
|
self, |
|
config, |
|
input_ids, |
|
attention_mask, |
|
lm_labels, |
|
): |
|
model = BlenderbotDecoder(config=config).to(torch_device).eval() |
|
|
|
|
|
attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) |
|
|
|
half_seq_length = input_ids.shape[-1] // 2 |
|
attn_mask[:, half_seq_length:] = 0 |
|
|
|
|
|
past_key_values = model(input_ids, attention_mask=attn_mask, use_cache=True)["past_key_values"] |
|
|
|
|
|
|
|
next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) |
|
|
|
|
|
random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 |
|
random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) |
|
input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens |
|
|
|
|
|
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) |
|
attn_mask = torch.cat( |
|
[attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], |
|
dim=1, |
|
) |
|
|
|
|
|
output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] |
|
output_from_past = model(next_tokens, past_key_values=past_key_values, attention_mask=attn_mask)[ |
|
"last_hidden_state" |
|
] |
|
|
|
|
|
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() |
|
output_from_no_past_slice = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() |
|
output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() |
|
|
|
|
|
assert torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3) |
|
|
|
def prepare_config_and_inputs_for_common(self): |
|
config_and_inputs = self.prepare_config_and_inputs() |
|
( |
|
config, |
|
input_ids, |
|
attention_mask, |
|
lm_labels, |
|
) = config_and_inputs |
|
|
|
inputs_dict = { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
} |
|
return config, inputs_dict |
|
|
|
|
|
@require_torch |
|
class BlenderbotStandaloneDecoderModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): |
|
all_model_classes = (BlenderbotDecoder, BlenderbotForCausalLM) if is_torch_available() else () |
|
all_generative_model_classes = (BlenderbotForCausalLM,) if is_torch_available() else () |
|
test_pruning = False |
|
is_encoder_decoder = False |
|
|
|
def setUp( |
|
self, |
|
): |
|
self.model_tester = BlenderbotStandaloneDecoderModelTester(self, is_training=False) |
|
self.config_tester = ConfigTester(self, config_class=BlenderbotConfig) |
|
|
|
def test_config(self): |
|
self.config_tester.run_common_tests() |
|
|
|
def test_decoder_model_past(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_decoder_model_past(*config_and_inputs) |
|
|
|
def test_decoder_model_attn_mask_past(self): |
|
config_and_inputs = self.model_tester.prepare_config_and_inputs() |
|
self.model_tester.create_and_check_decoder_model_attention_mask_past(*config_and_inputs) |
|
|
|
def test_retain_grad_hidden_states_attentions(self): |
|
|
|
return |
|
|