ppo-LunarLander-v2 / config.json
lvtiendev's picture
Upload PPO LunarLanderv2 agent
3ea0ce9 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c7940bae290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c7940bae320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c7940bae3b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c7940bae440>", "_build": "<function ActorCriticPolicy._build at 0x7c7940bae4d0>", "forward": "<function ActorCriticPolicy.forward at 0x7c7940bae560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c7940bae5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c7940bae680>", "_predict": "<function ActorCriticPolicy._predict at 0x7c7940bae710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c7940bae7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c7940bae830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c7940bae8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c7940b55e80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717482064016853935, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpgOL4BeZG8g6hSOyzJmDlMSfo9ZzKIugAAgD8AAIA/M8ysvIKXaT+BCiu80H7Yvqztxbwr5AW8AAAAAAAAAADaXJU+uLSCu+5MLDfmLiO0tu3SvLqZSbYAAIA/AACAP2ZZ3r2qxY8/cmC5vq1V9b6Yvgu+9yUSPQAAAAAAAAAA1QCrvn6LAD+3Bgc9pRupvlWgwL0C+r+8AAAAAAAAAADQMJA+R4HlPjhWCj3jc5O+zV45PSpBhzwAAAAAAAAAAM30cT7OrrG8OGV2uw7nnTnJoyG++ip1OgAAgD8AAIA/zfJgvgGdoLzSK287SvCcOWxpED5jsXa6AACAPwAAgD/NLtm8xVi5PHcgJj4LIxS+vclhPe1Cjj0AAAAAAAAAABN9Nb6oNZS8OACtOS6WsDe2EA8+7VjnuAAAgD8AAIA/MxuIvPbsW7qEdyO2lzGtsZ9gozoa0kI1AACAPwAAgD8zeC0+GYUiP34ukD2gOL6+IwlzPdJESb0AAAAAAAAAAAAWSz6Blo28WDEEvWXajj02qwS+o0ecvAAAgD8AAIA/UFmWPs/AabyJwYI3iRCGtX10yb2LPpe2AACAPwAAgD/GiGa+HsW+Pbwknj1JP0O+awwNve5Z5zwAAAAAAAAAAM3Quz11PJI/OuSvPjA+xL70bdA9VbMtPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/uGMn7YTWMAWyUTR8BjAF0lEdAl0mFh9b5dnV9lChoBkdAQoYYvWYnfGgHTQoBaAhHQJdKnI8yN4t1fZQoaAZHQG26hNdqtYBoB0v6aAhHQJdNvjsD4g11fZQoaAZHQG3eSUs4DLdoB00rAWgIR0CXTe8f3evZdX2UKGgGR0Bw1paKUFB6aAdL72gIR0CXTjndweeWdX2UKGgGR0Bsl6kEcKgJaAdNIQFoCEdAl08K4tpVTHV9lChoBkdAcZJAtWdVemgHS/RoCEdAl1O60IC2dHV9lChoBkdAbMXp4bCJoGgHTTgCaAhHQJdUl2B8QZp1fZQoaAZHQG4DSYgJTl1oB0v1aAhHQJdVlGc4HX51fZQoaAZHQHADL5Ec81ZoB00VAWgIR0CXVegn+hoNdX2UKGgGR0BjxqreZXuFaAdN6ANoCEdAl1k1OTJQtXV9lChoBkdAbs43PRiPQ2gHS/loCEdAl1lDtG/etXV9lChoBkdAcLR2gFotc2gHS/9oCEdAl1m/o/zJ63V9lChoBkdAcdEWKMvRJGgHS/loCEdAl1nBZpztC3V9lChoBkdAcEVs9jgAImgHS/VoCEdAl1ppxWDHwXV9lChoBkdAcfo5myxA0WgHTaABaAhHQJdauGKyfL91fZQoaAZHQHC1F2q1gIBoB02YAWgIR0CXWzUwi7kGdX2UKGgGR0BxSjwG4ZuRaAdL/GgIR0CXva2WpqASdX2UKGgGR0BZUS2lVLi/aAdN6ANoCEdAl77l7Uoa1nV9lChoBkdAcLKfl6qsEWgHTRQBaAhHQJe/yDf3vhJ1fZQoaAZHQDvC+Eh7mdRoB0unaAhHQJfAUixFAml1fZQoaAZHQHE/P8l5WzZoB00lAWgIR0CXwOCSRr8BdX2UKGgGR0BtmyWE9MbnaAdNKQNoCEdAl8Gty5qdpnV9lChoBkdAb6tc6eXiSGgHTQMBaAhHQJfCcgxJul51fZQoaAZHQGvIApazNUxoB00CAWgIR0CXw3x5cC5mdX2UKGgGR0BxYRaSs8xLaAdL/mgIR0CXw5q6vq1PdX2UKGgGR0BZkJMURFqjaAdN6ANoCEdAl8SnMyJsPHV9lChoBkdAcNVowEhaDGgHTToBaAhHQJfFBjhDPWx1fZQoaAZHQG2xfI0ZWJdoB0v0aAhHQJfHvYmLLp11fZQoaAZHQHExImG/N7loB00BAWgIR0CXyWfzz3AVdX2UKGgGR0BeXhrzoUzsaAdN6ANoCEdAl8m/RE4NqnV9lChoBkdAcCsicoYvWmgHTQUBaAhHQJfKzqVyFPB1fZQoaAZHQGjCOg6EJ0JoB00KAWgIR0CXy763iJfqdX2UKGgGR0BhJE6eXiR5aAdN6ANoCEdAl88IMrmQsHV9lChoBkdAbxLH6uW8iGgHTQMBaAhHQJfPsGqxTsJ1fZQoaAZHQHEENqgyuZFoB00QAWgIR0CX0DpmVZ9vdX2UKGgGR0Bw7PxNIsiCaAdL/GgIR0CX0W02cawVdX2UKGgGR0BvwwsZpBX0aAdNVgFoCEdAl9WkQsf7rXV9lChoBkdAbnVLhaTwD2gHTRIBaAhHQJfYLLlmvnt1fZQoaAZHQG5nU4aP0ZpoB0v9aAhHQJfYTGXHBDZ1fZQoaAZHQG2dsBp5/spoB0v0aAhHQJfYqMFUyYZ1fZQoaAZHQGgrG3OObRZoB03RAWgIR0CX2L68QI2PdX2UKGgGR0BvQD3Zf2K3aAdNXwFoCEdAl9nZuhsZYXV9lChoBkdAPdEbDMvAXWgHS9RoCEdAl9qkYbbUPXV9lChoBkdAcf8BAv+OwWgHTQABaAhHQJfbp52Qnx91fZQoaAZHQG2pJYkmhM9oB00DAWgIR0CX3DPK+zt1dX2UKGgGR0BwOanEVFhHaAdL6GgIR0CX3FwqAjIJdX2UKGgGR0BinDiXIEKWaAdN6ANoCEdAl996E8JUpHV9lChoBkdAcN/68xsVL2gHS/doCEdAl+A6iTMaCXV9lChoBkdAbuvHT7VJ+WgHS+doCEdAl+ILayrxRXV9lChoBkdAbL0FnqVyFWgHS/RoCEdAl+RS04R283V9lChoBkdAYCIR/3Fkx2gHTegDaAhHQJfko3Lmp2l1fZQoaAZHQGgaVAzHjp9oB00AA2gIR0CX5PwfyPMjdX2UKGgGR0Bhrz3XZoPDaAdN6ANoCEdAl+UQ57w8XHV9lChoBkdAcPWT6SDAamgHTSMBaAhHQJflI7hegL91fZQoaAZHQHAtfBN21UloB00GAWgIR0CX5cAAyVOcdX2UKGgGR0BwR4TURWcSaAdL9WgIR0CX5m94u9OAdX2UKGgGR0Bs3OyAxzq9aAdNAgFoCEdAl+cj1wo9cXV9lChoBkdAcFGR6Ww/xGgHTQkBaAhHQJfrsGLUCq91fZQoaAZHQGKRX1rZampoB03oA2gIR0CX7o8CxNZedX2UKGgGR0BwA5mCiAUdaAdNHAFoCEdAl+7Qosqaw3V9lChoBkdAcRF8Emplz2gHTQsBaAhHQJfwl/SYw7F1fZQoaAZHQHD3ewHJLdxoB00FAWgIR0CX8MVARkEtdX2UKGgGR0BwDANpdrwfaAdNBAFoCEdAl/GXQdCE6HV9lChoBkdAcOnagmJFb2gHTQIBaAhHQJfycTyrgfl1fZQoaAZHQHDchUNrj5toB01uAWgIR0CX9MvTgEU1dX2UKGgGR0Bx2RnIyTIOaAdNOwFoCEdAl/XAFTvRZ3V9lChoBkdAcgOC1JDmbWgHS/RoCEdAl/cXPJJXhnV9lChoBkdAcMvBRAKOUGgHTZ4BaAhHQJf3wZccENh1fZQoaAZHQFpVkz41xbVoB03oA2gIR0CX+G6hg3LndX2UKGgGR0Bwk9u89Oh1aAdL8mgIR0CX+WAQQL/kdX2UKGgGR0BtP+K8+RozaAdN/wJoCEdAl/nZjMFEA3V9lChoBkdAZ050Qsf7rWgHTTQBaAhHQJf7/Ot4iX91fZQoaAZHQHCWZZGKAJ9oB00QAWgIR0CX/CNDc/MXdX2UKGgGR0Bwz8Kw6hg3aAdL82gIR0CX/Jsxfv4NdX2UKGgGR0AjbVwxWT5gaAdL0WgIR0CX/X44ZMtcdX2UKGgGR0Bwj7Heaa1DaAdNQgFoCEdAl/+hsQ/X5HV9lChoBkdAcWUdRiw0O2gHS/xoCEdAmAJdGqgh83V9lChoBkdAb8BE0iyIHmgHTQ0BaAhHQJgERUuL7411fZQoaAZHQHCTWrXDm8xoB0voaAhHQJgEYtpVS4x1fZQoaAZHQG5ehZIQOFxoB01JAWgIR0CYBRuxKQJYdX2UKGgGR0Bi9k70WdmQaAdN6ANoCEdAmAW/BN21UnV9lChoBkdAb/kETxoZh2gHTTABaAhHQJgG0t29tdl1fZQoaAZHQGtrCSq2jO9oB00ZAWgIR0CYB3d4FA3UdX2UKGgGR0Bu3ah+OOsDaAdL9GgIR0CYCIRmseXBdX2UKGgGR0BgfCJqIrOJaAdN6ANoCEdAmAkAlKK51HV9lChoBkdAbg5f/FR51WgHTQsBaAhHQJgKAHfMwDh1fZQoaAZHQG6+niFTNt9oB00yAWgIR0CYC+LNwBHTdX2UKGgGR0BgtdwcYIjXaAdN6ANoCEdAmAw6ij+Jg3V9lChoBkdAcYKnDR+jM2gHTTsBaAhHQJgNrNW2gFp1fZQoaAZHQG0od/8VHnVoB00LAWgIR0CYDdDM/yG0dX2UKGgGR0BuNf7SApazaAdL9WgIR0CYDtK3NLUTdX2UKGgGR0BtxCWzF+/haAdL+2gIR0CYD4k6Lfk4dX2UKGgGR0Bc9q8cuJ1raAdN6ANoCEdAmBC1KCg9NnV9lChoBkdAbqBIPsiSq2gHTQQBaAhHQJgR0rDqGDd1fZQoaAZHQDXZCHARChNoB0u7aAhHQJgS8dmxt551fZQoaAZHQG+GcUuctoVoB00MAWgIR0CYE25ooNNKdX2UKGgGR0BsYTDfm9xqaAdNLwFoCEdAmBO24qgAZXV9lChoBkdAbwu25xzaK2gHTRIBaAhHQJgVqYG+sYF1fZQoaAZHQG6EZpztCzFoB03LAWgIR0CYFd5Fw1iwdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}