Update STPoseNet/README.md
Browse files- STPoseNet/README.md +9 -20
STPoseNet/README.md
CHANGED
@@ -19,13 +19,11 @@ Keypoints identification program for STposeNet
|
|
19 |
```
|
20 |
### **Dataset preparation**
|
21 |
|
22 |
-
In this folder [
|
23 |
-
* In this folder, [leftImg8bit](https://github.com/XZH-James/NeuroSeg2/tree/main/NeuroSeg%E2%85%A1-main/NeuroSeg%E2%85%A1-main/Neurofinder/test/leftImg8bit) stores the two-photon calcium imaging and [gtFine](https://github.com/XZH-James/NeuroSeg2/tree/main/NeuroSeg%E2%85%A1-main/NeuroSeg%E2%85%A1-main/Neurofinder/test/gtFine) stores the corresponding GT.
|
24 |
-
* [generate_dataset.py](https://github.com/XZH-James/NeuroSeg2/blob/main/NeuroSeg%E2%85%A1-main/NeuroSeg%E2%85%A1-main/Neurofinder/generate_dataset.py) is used to generate [image list](https://github.com/XZH-James/NeuroSeg2/tree/main/NeuroSeg%E2%85%A1-main/NeuroSeg%E2%85%A1-main/Neurofinder/imglists). After adding new images, run this code to generate the list for training and test code can read new images.
|
25 |
|
26 |
-
### **
|
27 |
|
28 |
-
This
|
29 |
|
30 |
### **training or testing**
|
31 |
|
@@ -33,23 +31,14 @@ After abtaining the dataset and model, running [test.py](https://github.com/XZH-
|
|
33 |
Running [train.py](https://github.com/XZH-James/NeuroSeg2/blob/main/NeuroSeg%E2%85%A1-main/NeuroSeg%E2%85%A1-main/train.py) to train the new dataset.
|
34 |
|
35 |
### **The result**
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
* [evaluation_log.csv](https://github.com/XZH-James/NeuroSeg2/blob/main/NeuroSeg%E2%85%A1-main/NeuroSeg%E2%85%A1-main/logs/evalution/Neurofinder/evaluation_log.csv) is the score for this test.
|
40 |
|
41 |
## Other matters
|
42 |
-
|
43 |
-
|
44 |
-
In [neuroseg2](https://github.com/XZH-James/NeuroSeg2/tree/main/NeuroSeg%E2%85%A1-main/NeuroSeg%E2%85%A1-main/neuroseg2) are the core code of NeuroSeg-II.
|
45 |
-
* [model.py](https://github.com/XZH-James/NeuroSeg2/blob/main/NeuroSeg%E2%85%A1-main/NeuroSeg%E2%85%A1-main/neuroseg2/model.py) and [utils.py](https://github.com/XZH-James/NeuroSeg2/blob/main/NeuroSeg%E2%85%A1-main/NeuroSeg%E2%85%A1-main/neuroseg2/utils.py) are the code of overall structure.
|
46 |
-
* [Down.py](https://github.com/XZH-James/NeuroSeg2/blob/main/NeuroSeg%E2%85%A1-main/NeuroSeg%E2%85%A1-main/neuroseg2/Down.py) is the code of FPN+.
|
47 |
-
* [attention.py](https://github.com/XZH-James/NeuroSeg2/blob/main/NeuroSeg%E2%85%A1-main/NeuroSeg%E2%85%A1-main/neuroseg2/attention.py) is the code of attention mechanism.
|
48 |
-
* [visualize.py](https://github.com/XZH-James/NeuroSeg2/blob/main/NeuroSeg%E2%85%A1-main/NeuroSeg%E2%85%A1-main/neuroseg2/visualize.py) is the code for visual segmentation result.
|
49 |
-
|
50 |
-
### **Code of preprocessing**
|
51 |
-
In [utilities](https://github.com/XZH-James/NeuroSeg2/tree/main/NeuroSeg%E2%85%A1-main/NeuroSeg%E2%85%A1-main/utilities) are the code for preprocessing.
|
52 |
|
53 |
## Contact information
|
54 |
|
55 |
-
If you have any questions about this project, please feel free to contact us. Email address:
|
|
|
19 |
```
|
20 |
### **Dataset preparation**
|
21 |
|
22 |
+
In this folder [datasets](https://huggingface.co/lvrgb777/STPoseNet/tree/main/dataset), We provide train dataset and test images and video.
|
|
|
|
|
23 |
|
24 |
+
### **Pretrain weight preparation**
|
25 |
|
26 |
+
This file [weight](https://huggingface.co/lvrgb777/STPoseNet/blob/main/yolov8l_pose_mouse_com.pt) ,We provide pretrain weight
|
27 |
|
28 |
### **training or testing**
|
29 |
|
|
|
31 |
Running [train.py](https://github.com/XZH-James/NeuroSeg2/blob/main/NeuroSeg%E2%85%A1-main/NeuroSeg%E2%85%A1-main/train.py) to train the new dataset.
|
32 |
|
33 |
### **The result**
|
34 |
+
2. run ./tool/min_img_label.py to perform data enhancement
|
35 |
+
3. run mouse-train.py to train weight for your experimental data
|
36 |
+
4. run mouse-pre to forecast result
|
|
|
37 |
|
38 |
## Other matters
|
39 |
+
## Core module code location
|
40 |
+
The main modifications base on yolo v8 are located ./ultralytice/engine/predictor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
## Contact information
|
43 |
|
44 |
+
If you have any questions about this project, please feel free to contact us. Email address: 2245162223@qq.com
|