full set E-I triplets
Browse files- 1_Pooling/config.json +10 -0
- README.md +877 -0
- config.json +58 -0
- config_sentence_transformers.json +10 -0
- configuration_hf_nomic_bert.py +56 -0
- model.safetensors +3 -0
- modeling_hf_nomic_bert.py +1234 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,877 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- dataset_size:100K<n<1M
|
9 |
+
- loss:CachedMultipleNegativesRankingLoss
|
10 |
+
base_model: nomic-ai/nomic-embed-text-v1.5
|
11 |
+
metrics:
|
12 |
+
- cosine_accuracy
|
13 |
+
- dot_accuracy
|
14 |
+
- manhattan_accuracy
|
15 |
+
- euclidean_accuracy
|
16 |
+
- max_accuracy
|
17 |
+
widget:
|
18 |
+
- source_sentence: 'search_query: adorime'
|
19 |
+
sentences:
|
20 |
+
- 'search_query: green air scents llc'
|
21 |
+
- 'search_query: dpms sbr accessories'
|
22 |
+
- 'search_query: sweaters cowl neck men'
|
23 |
+
- source_sentence: 'search_query: serving'
|
24 |
+
sentences:
|
25 |
+
- 'search_query: ceramic cups without handles'
|
26 |
+
- 'search_query: 100 mm cigarette case'
|
27 |
+
- 'search_query: toddler girl leopard midi'
|
28 |
+
- source_sentence: 'search_query: haierc'
|
29 |
+
sentences:
|
30 |
+
- 'search_query: homder'
|
31 |
+
- 'search_query: 3d milling metal cnc'
|
32 |
+
- 'search_query: sandals for women'
|
33 |
+
- source_sentence: 'search_query: poppies'
|
34 |
+
sentences:
|
35 |
+
- 'search_query: fake plants without pot'
|
36 |
+
- 'search_query: tonsil stone remover'
|
37 |
+
- 'search_query: vestido corto sexy de mujer'
|
38 |
+
- source_sentence: 'search_query: dab rig'
|
39 |
+
sentences:
|
40 |
+
- 'search_query: volcano weed vaporizer'
|
41 |
+
- 'search_query: 22 gold chain for men'
|
42 |
+
- 'search_query: apple watch screen protector'
|
43 |
+
pipeline_tag: sentence-similarity
|
44 |
+
model-index:
|
45 |
+
- name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
|
46 |
+
results:
|
47 |
+
- task:
|
48 |
+
type: triplet
|
49 |
+
name: Triplet
|
50 |
+
dataset:
|
51 |
+
name: triplet esci
|
52 |
+
type: triplet-esci
|
53 |
+
metrics:
|
54 |
+
- type: cosine_accuracy
|
55 |
+
value: 0.7405
|
56 |
+
name: Cosine Accuracy
|
57 |
+
- type: dot_accuracy
|
58 |
+
value: 0.269
|
59 |
+
name: Dot Accuracy
|
60 |
+
- type: manhattan_accuracy
|
61 |
+
value: 0.7432
|
62 |
+
name: Manhattan Accuracy
|
63 |
+
- type: euclidean_accuracy
|
64 |
+
value: 0.7457
|
65 |
+
name: Euclidean Accuracy
|
66 |
+
- type: max_accuracy
|
67 |
+
value: 0.7457
|
68 |
+
name: Max Accuracy
|
69 |
+
---
|
70 |
+
|
71 |
+
# SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
|
72 |
+
|
73 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
74 |
+
|
75 |
+
## Model Details
|
76 |
+
|
77 |
+
### Model Description
|
78 |
+
- **Model Type:** Sentence Transformer
|
79 |
+
- **Base model:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) <!-- at revision 91d2d6bfdddf0b0da840f901b533e99bae30d757 -->
|
80 |
+
- **Maximum Sequence Length:** 8192 tokens
|
81 |
+
- **Output Dimensionality:** 768 tokens
|
82 |
+
- **Similarity Function:** Cosine Similarity
|
83 |
+
<!-- - **Training Dataset:** Unknown -->
|
84 |
+
<!-- - **Language:** Unknown -->
|
85 |
+
<!-- - **License:** Unknown -->
|
86 |
+
|
87 |
+
### Model Sources
|
88 |
+
|
89 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
90 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
91 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
92 |
+
|
93 |
+
### Full Model Architecture
|
94 |
+
|
95 |
+
```
|
96 |
+
SentenceTransformer(
|
97 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
|
98 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
99 |
+
)
|
100 |
+
```
|
101 |
+
|
102 |
+
## Usage
|
103 |
+
|
104 |
+
### Direct Usage (Sentence Transformers)
|
105 |
+
|
106 |
+
First install the Sentence Transformers library:
|
107 |
+
|
108 |
+
```bash
|
109 |
+
pip install -U sentence-transformers
|
110 |
+
```
|
111 |
+
|
112 |
+
Then you can load this model and run inference.
|
113 |
+
```python
|
114 |
+
from sentence_transformers import SentenceTransformer
|
115 |
+
|
116 |
+
# Download from the 🤗 Hub
|
117 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
118 |
+
# Run inference
|
119 |
+
sentences = [
|
120 |
+
'search_query: dab rig',
|
121 |
+
'search_query: volcano weed vaporizer',
|
122 |
+
'search_query: 22 gold chain for men',
|
123 |
+
]
|
124 |
+
embeddings = model.encode(sentences)
|
125 |
+
print(embeddings.shape)
|
126 |
+
# [3, 768]
|
127 |
+
|
128 |
+
# Get the similarity scores for the embeddings
|
129 |
+
similarities = model.similarity(embeddings, embeddings)
|
130 |
+
print(similarities.shape)
|
131 |
+
# [3, 3]
|
132 |
+
```
|
133 |
+
|
134 |
+
<!--
|
135 |
+
### Direct Usage (Transformers)
|
136 |
+
|
137 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
138 |
+
|
139 |
+
</details>
|
140 |
+
-->
|
141 |
+
|
142 |
+
<!--
|
143 |
+
### Downstream Usage (Sentence Transformers)
|
144 |
+
|
145 |
+
You can finetune this model on your own dataset.
|
146 |
+
|
147 |
+
<details><summary>Click to expand</summary>
|
148 |
+
|
149 |
+
</details>
|
150 |
+
-->
|
151 |
+
|
152 |
+
<!--
|
153 |
+
### Out-of-Scope Use
|
154 |
+
|
155 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
156 |
+
-->
|
157 |
+
|
158 |
+
## Evaluation
|
159 |
+
|
160 |
+
### Metrics
|
161 |
+
|
162 |
+
#### Triplet
|
163 |
+
* Dataset: `triplet-esci`
|
164 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
165 |
+
|
166 |
+
| Metric | Value |
|
167 |
+
|:--------------------|:-----------|
|
168 |
+
| **cosine_accuracy** | **0.7405** |
|
169 |
+
| dot_accuracy | 0.269 |
|
170 |
+
| manhattan_accuracy | 0.7432 |
|
171 |
+
| euclidean_accuracy | 0.7457 |
|
172 |
+
| max_accuracy | 0.7457 |
|
173 |
+
|
174 |
+
<!--
|
175 |
+
## Bias, Risks and Limitations
|
176 |
+
|
177 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
178 |
+
-->
|
179 |
+
|
180 |
+
<!--
|
181 |
+
### Recommendations
|
182 |
+
|
183 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
184 |
+
-->
|
185 |
+
|
186 |
+
## Training Details
|
187 |
+
|
188 |
+
### Training Dataset
|
189 |
+
|
190 |
+
#### Unnamed Dataset
|
191 |
+
|
192 |
+
|
193 |
+
* Size: 167,039 training samples
|
194 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
195 |
+
* Approximate statistics based on the first 1000 samples:
|
196 |
+
| | anchor | positive | negative |
|
197 |
+
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
198 |
+
| type | string | string | string |
|
199 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 11.1 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 43.23 tokens</li><li>max: 124 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 43.16 tokens</li><li>max: 97 tokens</li></ul> |
|
200 |
+
* Samples:
|
201 |
+
| anchor | positive | negative |
|
202 |
+
|:--------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
203 |
+
| <code>search_query: foos ball coffee table</code> | <code>search_document: KICK Vanquish 55" in Foosball Table, KICK, Blue/Gray</code> | <code>search_document: KICK Legend 55" Foosball Table (Black), KICK, Black</code> |
|
204 |
+
| <code>search_query: bathroom rugs white washable</code> | <code>search_document: Luxury Bath Mat Floor Towel Set - Absorbent Cotton Hotel Spa Shower/Bathtub Mats [Not a Bathroom Rug] 22"x34" | White | 2 Pack, White Classic, White</code> | <code>search_document: Utopia Towels Cotton Banded Bath Mats, White [Not a Bathroom Rug] 21 x 34 Inches, 100% Ring Spun Cotton - Highly Absorbent and Machine Washable Shower Bathroom Floor Mat (Pack of 2), Utopia Towels, White</code> |
|
205 |
+
| <code>search_query: kids gloves</code> | <code>search_document: EvridWear Boys Girls Magic Stretch Gripper Gloves 3 Pair Pack Assortment, Kids One Size Winter Warm Gloves Children (8-14Years, 3 Pairs Camo), Evridwear, 3 Pairs Camo</code> | <code>search_document: Body Glove Little Boys 2-Piece UPF 50+ Rash Guard Swimsuit Set (2 Piece), All Black, Size 5, Body Glove, All Black</code> |
|
206 |
+
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
|
207 |
+
```json
|
208 |
+
{
|
209 |
+
"scale": 20.0,
|
210 |
+
"similarity_fct": "cos_sim"
|
211 |
+
}
|
212 |
+
```
|
213 |
+
|
214 |
+
### Evaluation Dataset
|
215 |
+
|
216 |
+
#### Unnamed Dataset
|
217 |
+
|
218 |
+
|
219 |
+
* Size: 10,000 evaluation samples
|
220 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
221 |
+
* Approximate statistics based on the first 1000 samples:
|
222 |
+
| | anchor | positive | negative |
|
223 |
+
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
224 |
+
| type | string | string | string |
|
225 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 11.44 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 42.26 tokens</li><li>max: 92 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 42.28 tokens</li><li>max: 105 tokens</li></ul> |
|
226 |
+
* Samples:
|
227 |
+
| anchor | positive | negative |
|
228 |
+
|:--------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
229 |
+
| <code>search_query: defender series iphone 8</code> | <code>search_document: Hand-e Muscle Series Belt Clip Case for Apple iPhone 7 / iPhone 8 / iPhone SE “2020” (4.7”) 2-in-1 Protective Defender w Screen Protector & Holster & Kickstand/Shock & Drop Proof – Camouflage/Orange, Hand-e, Camouflage / Orange</code> | <code>search_document: OtterBox Defender Series Rugged Case for iPhone 8 PLUS & iPhone 7 PLUS - Case Only - Non-Retail Packaging - Dark Lake - With Microbial Defense, OtterBox, Dark Lake</code> |
|
230 |
+
| <code>search_query: joy mangano</code> | <code>search_document: Joy by Joy Mangano 11-Piece Complete Luxury Towel Set, Ivory, Joy Mangano, Ivory</code> | <code>search_document: BAGSMART Jewelry Organizer Case Travel Jewelry Storage Bag for Necklace, Earrings, Rings, Bracelet, Soft Pink, BAGSMART, Soft Pink</code> |
|
231 |
+
| <code>search_query: cashel fly masks for horses without ears</code> | <code>search_document: Cashel Crusader Designer Horse Fly Mask, Leopard, Weanling, Cashel, Leopard</code> | <code>search_document: Cashel Crusader Designer Horse Fly Mask with Ears, Teal Tribal, Weanling, Cashel, Teal Tribal</code> |
|
232 |
+
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
|
233 |
+
```json
|
234 |
+
{
|
235 |
+
"scale": 20.0,
|
236 |
+
"similarity_fct": "cos_sim"
|
237 |
+
}
|
238 |
+
```
|
239 |
+
|
240 |
+
### Training Hyperparameters
|
241 |
+
#### Non-Default Hyperparameters
|
242 |
+
|
243 |
+
- `per_device_train_batch_size`: 4
|
244 |
+
- `per_device_eval_batch_size`: 4
|
245 |
+
- `gradient_accumulation_steps`: 4
|
246 |
+
- `learning_rate`: 1e-06
|
247 |
+
- `num_train_epochs`: 5
|
248 |
+
- `lr_scheduler_type`: cosine_with_restarts
|
249 |
+
- `warmup_ratio`: 0.1
|
250 |
+
- `dataloader_drop_last`: True
|
251 |
+
- `dataloader_num_workers`: 4
|
252 |
+
- `dataloader_prefetch_factor`: 2
|
253 |
+
- `load_best_model_at_end`: True
|
254 |
+
- `batch_sampler`: no_duplicates
|
255 |
+
|
256 |
+
#### All Hyperparameters
|
257 |
+
<details><summary>Click to expand</summary>
|
258 |
+
|
259 |
+
- `overwrite_output_dir`: False
|
260 |
+
- `do_predict`: False
|
261 |
+
- `prediction_loss_only`: True
|
262 |
+
- `per_device_train_batch_size`: 4
|
263 |
+
- `per_device_eval_batch_size`: 4
|
264 |
+
- `per_gpu_train_batch_size`: None
|
265 |
+
- `per_gpu_eval_batch_size`: None
|
266 |
+
- `gradient_accumulation_steps`: 4
|
267 |
+
- `eval_accumulation_steps`: None
|
268 |
+
- `learning_rate`: 1e-06
|
269 |
+
- `weight_decay`: 0.0
|
270 |
+
- `adam_beta1`: 0.9
|
271 |
+
- `adam_beta2`: 0.999
|
272 |
+
- `adam_epsilon`: 1e-08
|
273 |
+
- `max_grad_norm`: 1.0
|
274 |
+
- `num_train_epochs`: 5
|
275 |
+
- `max_steps`: -1
|
276 |
+
- `lr_scheduler_type`: cosine_with_restarts
|
277 |
+
- `lr_scheduler_kwargs`: {}
|
278 |
+
- `warmup_ratio`: 0.1
|
279 |
+
- `warmup_steps`: 0
|
280 |
+
- `log_level`: passive
|
281 |
+
- `log_level_replica`: warning
|
282 |
+
- `log_on_each_node`: True
|
283 |
+
- `logging_nan_inf_filter`: True
|
284 |
+
- `save_safetensors`: True
|
285 |
+
- `save_on_each_node`: False
|
286 |
+
- `save_only_model`: False
|
287 |
+
- `no_cuda`: False
|
288 |
+
- `use_cpu`: False
|
289 |
+
- `use_mps_device`: False
|
290 |
+
- `seed`: 42
|
291 |
+
- `data_seed`: None
|
292 |
+
- `jit_mode_eval`: False
|
293 |
+
- `use_ipex`: False
|
294 |
+
- `bf16`: False
|
295 |
+
- `fp16`: False
|
296 |
+
- `fp16_opt_level`: O1
|
297 |
+
- `half_precision_backend`: auto
|
298 |
+
- `bf16_full_eval`: False
|
299 |
+
- `fp16_full_eval`: False
|
300 |
+
- `tf32`: None
|
301 |
+
- `local_rank`: 0
|
302 |
+
- `ddp_backend`: None
|
303 |
+
- `tpu_num_cores`: None
|
304 |
+
- `tpu_metrics_debug`: False
|
305 |
+
- `debug`: []
|
306 |
+
- `dataloader_drop_last`: True
|
307 |
+
- `dataloader_num_workers`: 4
|
308 |
+
- `dataloader_prefetch_factor`: 2
|
309 |
+
- `past_index`: -1
|
310 |
+
- `disable_tqdm`: False
|
311 |
+
- `remove_unused_columns`: True
|
312 |
+
- `label_names`: None
|
313 |
+
- `load_best_model_at_end`: True
|
314 |
+
- `ignore_data_skip`: False
|
315 |
+
- `fsdp`: []
|
316 |
+
- `fsdp_min_num_params`: 0
|
317 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
318 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
319 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
|
320 |
+
- `deepspeed`: None
|
321 |
+
- `label_smoothing_factor`: 0.0
|
322 |
+
- `optim`: adamw_torch
|
323 |
+
- `optim_args`: None
|
324 |
+
- `adafactor`: False
|
325 |
+
- `group_by_length`: False
|
326 |
+
- `length_column_name`: length
|
327 |
+
- `ddp_find_unused_parameters`: None
|
328 |
+
- `ddp_bucket_cap_mb`: None
|
329 |
+
- `ddp_broadcast_buffers`: False
|
330 |
+
- `dataloader_pin_memory`: True
|
331 |
+
- `dataloader_persistent_workers`: False
|
332 |
+
- `skip_memory_metrics`: True
|
333 |
+
- `use_legacy_prediction_loop`: False
|
334 |
+
- `push_to_hub`: False
|
335 |
+
- `resume_from_checkpoint`: None
|
336 |
+
- `hub_model_id`: None
|
337 |
+
- `hub_strategy`: every_save
|
338 |
+
- `hub_private_repo`: False
|
339 |
+
- `hub_always_push`: False
|
340 |
+
- `gradient_checkpointing`: False
|
341 |
+
- `gradient_checkpointing_kwargs`: None
|
342 |
+
- `include_inputs_for_metrics`: False
|
343 |
+
- `fp16_backend`: auto
|
344 |
+
- `push_to_hub_model_id`: None
|
345 |
+
- `push_to_hub_organization`: None
|
346 |
+
- `mp_parameters`:
|
347 |
+
- `auto_find_batch_size`: False
|
348 |
+
- `full_determinism`: False
|
349 |
+
- `torchdynamo`: None
|
350 |
+
- `ray_scope`: last
|
351 |
+
- `ddp_timeout`: 1800
|
352 |
+
- `torch_compile`: False
|
353 |
+
- `torch_compile_backend`: None
|
354 |
+
- `torch_compile_mode`: None
|
355 |
+
- `dispatch_batches`: None
|
356 |
+
- `split_batches`: None
|
357 |
+
- `include_tokens_per_second`: False
|
358 |
+
- `include_num_input_tokens_seen`: False
|
359 |
+
- `neftune_noise_alpha`: None
|
360 |
+
- `batch_sampler`: no_duplicates
|
361 |
+
- `multi_dataset_batch_sampler`: proportional
|
362 |
+
|
363 |
+
</details>
|
364 |
+
|
365 |
+
### Training Logs
|
366 |
+
<details><summary>Click to expand</summary>
|
367 |
+
|
368 |
+
| Epoch | Step | Training Loss | loss | triplet-esci_cosine_accuracy |
|
369 |
+
|:------:|:-----:|:-------------:|:------:|:----------------------------:|
|
370 |
+
| 0.0096 | 100 | 0.6669 | - | - |
|
371 |
+
| 0.0192 | 200 | 0.6633 | - | - |
|
372 |
+
| 0.0287 | 300 | 0.6575 | - | - |
|
373 |
+
| 0.0383 | 400 | 0.6638 | - | - |
|
374 |
+
| 0.0479 | 500 | 0.6191 | - | - |
|
375 |
+
| 0.0575 | 600 | 0.6464 | - | - |
|
376 |
+
| 0.0671 | 700 | 0.6291 | - | - |
|
377 |
+
| 0.0766 | 800 | 0.5973 | - | - |
|
378 |
+
| 0.0862 | 900 | 0.605 | - | - |
|
379 |
+
| 0.0958 | 1000 | 0.6278 | 0.6525 | 0.7269 |
|
380 |
+
| 0.1054 | 1100 | 0.6041 | - | - |
|
381 |
+
| 0.1149 | 1200 | 0.6077 | - | - |
|
382 |
+
| 0.1245 | 1300 | 0.589 | - | - |
|
383 |
+
| 0.1341 | 1400 | 0.5811 | - | - |
|
384 |
+
| 0.1437 | 1500 | 0.5512 | - | - |
|
385 |
+
| 0.1533 | 1600 | 0.5907 | - | - |
|
386 |
+
| 0.1628 | 1700 | 0.5718 | - | - |
|
387 |
+
| 0.1724 | 1800 | 0.5446 | - | - |
|
388 |
+
| 0.1820 | 1900 | 0.546 | - | - |
|
389 |
+
| 0.1916 | 2000 | 0.5141 | 0.6105 | 0.7386 |
|
390 |
+
| 0.2012 | 2100 | 0.5359 | - | - |
|
391 |
+
| 0.2107 | 2200 | 0.5093 | - | - |
|
392 |
+
| 0.2203 | 2300 | 0.5384 | - | - |
|
393 |
+
| 0.2299 | 2400 | 0.5582 | - | - |
|
394 |
+
| 0.2395 | 2500 | 0.5038 | - | - |
|
395 |
+
| 0.2490 | 2600 | 0.5031 | - | - |
|
396 |
+
| 0.2586 | 2700 | 0.5393 | - | - |
|
397 |
+
| 0.2682 | 2800 | 0.4979 | - | - |
|
398 |
+
| 0.2778 | 2900 | 0.5221 | - | - |
|
399 |
+
| 0.2874 | 3000 | 0.4956 | 0.5852 | 0.7495 |
|
400 |
+
| 0.2969 | 3100 | 0.506 | - | - |
|
401 |
+
| 0.3065 | 3200 | 0.4962 | - | - |
|
402 |
+
| 0.3161 | 3300 | 0.4713 | - | - |
|
403 |
+
| 0.3257 | 3400 | 0.5016 | - | - |
|
404 |
+
| 0.3353 | 3500 | 0.4749 | - | - |
|
405 |
+
| 0.3448 | 3600 | 0.4732 | - | - |
|
406 |
+
| 0.3544 | 3700 | 0.4789 | - | - |
|
407 |
+
| 0.3640 | 3800 | 0.4825 | - | - |
|
408 |
+
| 0.3736 | 3900 | 0.4803 | - | - |
|
409 |
+
| 0.3832 | 4000 | 0.4471 | 0.5743 | 0.7546 |
|
410 |
+
| 0.3927 | 4100 | 0.4593 | - | - |
|
411 |
+
| 0.4023 | 4200 | 0.4481 | - | - |
|
412 |
+
| 0.4119 | 4300 | 0.4603 | - | - |
|
413 |
+
| 0.4215 | 4400 | 0.4569 | - | - |
|
414 |
+
| 0.4310 | 4500 | 0.4807 | - | - |
|
415 |
+
| 0.4406 | 4600 | 0.4368 | - | - |
|
416 |
+
| 0.4502 | 4700 | 0.4532 | - | - |
|
417 |
+
| 0.4598 | 4800 | 0.4432 | - | - |
|
418 |
+
| 0.4694 | 4900 | 0.4802 | - | - |
|
419 |
+
| 0.4789 | 5000 | 0.4643 | 0.5663 | 0.7593 |
|
420 |
+
| 0.4885 | 5100 | 0.4154 | - | - |
|
421 |
+
| 0.4981 | 5200 | 0.4441 | - | - |
|
422 |
+
| 0.5077 | 5300 | 0.4156 | - | - |
|
423 |
+
| 0.5173 | 5400 | 0.4273 | - | - |
|
424 |
+
| 0.5268 | 5500 | 0.3988 | - | - |
|
425 |
+
| 0.5364 | 5600 | 0.3942 | - | - |
|
426 |
+
| 0.5460 | 5700 | 0.4186 | - | - |
|
427 |
+
| 0.5556 | 5800 | 0.423 | - | - |
|
428 |
+
| 0.5651 | 5900 | 0.434 | - | - |
|
429 |
+
| 0.5747 | 6000 | 0.4136 | 0.5704 | 0.7616 |
|
430 |
+
| 0.5843 | 6100 | 0.3968 | - | - |
|
431 |
+
| 0.5939 | 6200 | 0.4045 | - | - |
|
432 |
+
| 0.6035 | 6300 | 0.4122 | - | - |
|
433 |
+
| 0.6130 | 6400 | 0.3618 | - | - |
|
434 |
+
| 0.6226 | 6500 | 0.341 | - | - |
|
435 |
+
| 0.6322 | 6600 | 0.3689 | - | - |
|
436 |
+
| 0.6418 | 6700 | 0.3621 | - | - |
|
437 |
+
| 0.6514 | 6800 | 0.3774 | - | - |
|
438 |
+
| 0.6609 | 6900 | 0.3519 | - | - |
|
439 |
+
| 0.6705 | 7000 | 0.3974 | 0.5729 | 0.7644 |
|
440 |
+
| 0.6801 | 7100 | 0.3443 | - | - |
|
441 |
+
| 0.6897 | 7200 | 0.3665 | - | - |
|
442 |
+
| 0.6993 | 7300 | 0.3683 | - | - |
|
443 |
+
| 0.7088 | 7400 | 0.3593 | - | - |
|
444 |
+
| 0.7184 | 7500 | 0.3419 | - | - |
|
445 |
+
| 0.7280 | 7600 | 0.3587 | - | - |
|
446 |
+
| 0.7376 | 7700 | 0.3463 | - | - |
|
447 |
+
| 0.7471 | 7800 | 0.3417 | - | - |
|
448 |
+
| 0.7567 | 7900 | 0.32 | - | - |
|
449 |
+
| 0.7663 | 8000 | 0.32 | 0.5735 | 0.7677 |
|
450 |
+
| 0.7759 | 8100 | 0.3296 | - | - |
|
451 |
+
| 0.7855 | 8200 | 0.3492 | - | - |
|
452 |
+
| 0.7950 | 8300 | 0.3022 | - | - |
|
453 |
+
| 0.8046 | 8400 | 0.3159 | - | - |
|
454 |
+
| 0.8142 | 8500 | 0.3172 | - | - |
|
455 |
+
| 0.8238 | 8600 | 0.3157 | - | - |
|
456 |
+
| 0.8334 | 8700 | 0.3271 | - | - |
|
457 |
+
| 0.8429 | 8800 | 0.337 | - | - |
|
458 |
+
| 0.8525 | 8900 | 0.322 | - | - |
|
459 |
+
| 0.8621 | 9000 | 0.3187 | 0.5803 | 0.7652 |
|
460 |
+
| 0.8717 | 9100 | 0.307 | - | - |
|
461 |
+
| 0.8812 | 9200 | 0.2984 | - | - |
|
462 |
+
| 0.8908 | 9300 | 0.2727 | - | - |
|
463 |
+
| 0.9004 | 9400 | 0.304 | - | - |
|
464 |
+
| 0.9100 | 9500 | 0.321 | - | - |
|
465 |
+
| 0.9196 | 9600 | 0.304 | - | - |
|
466 |
+
| 0.9291 | 9700 | 0.3302 | - | - |
|
467 |
+
| 0.9387 | 9800 | 0.3302 | - | - |
|
468 |
+
| 0.9483 | 9900 | 0.3134 | - | - |
|
469 |
+
| 0.9579 | 10000 | 0.2936 | 0.5858 | 0.7671 |
|
470 |
+
| 0.9675 | 10100 | 0.2953 | - | - |
|
471 |
+
| 0.9770 | 10200 | 0.3035 | - | - |
|
472 |
+
| 0.9866 | 10300 | 0.303 | - | - |
|
473 |
+
| 0.9962 | 10400 | 0.2606 | - | - |
|
474 |
+
| 1.0058 | 10500 | 0.2615 | - | - |
|
475 |
+
| 1.0153 | 10600 | 0.2703 | - | - |
|
476 |
+
| 1.0249 | 10700 | 0.2761 | - | - |
|
477 |
+
| 1.0345 | 10800 | 0.2559 | - | - |
|
478 |
+
| 1.0441 | 10900 | 0.2672 | - | - |
|
479 |
+
| 1.0537 | 11000 | 0.2656 | 0.5933 | 0.7676 |
|
480 |
+
| 1.0632 | 11100 | 0.2825 | - | - |
|
481 |
+
| 1.0728 | 11200 | 0.2484 | - | - |
|
482 |
+
| 1.0824 | 11300 | 0.2472 | - | - |
|
483 |
+
| 1.0920 | 11400 | 0.2678 | - | - |
|
484 |
+
| 1.1016 | 11500 | 0.2443 | - | - |
|
485 |
+
| 1.1111 | 11600 | 0.2685 | - | - |
|
486 |
+
| 1.1207 | 11700 | 0.2504 | - | - |
|
487 |
+
| 1.1303 | 11800 | 0.2431 | - | - |
|
488 |
+
| 1.1399 | 11900 | 0.2248 | - | - |
|
489 |
+
| 1.1495 | 12000 | 0.2229 | 0.5958 | 0.7688 |
|
490 |
+
| 1.1590 | 12100 | 0.228 | - | - |
|
491 |
+
| 1.1686 | 12200 | 0.2304 | - | - |
|
492 |
+
| 1.1782 | 12300 | 0.2193 | - | - |
|
493 |
+
| 1.1878 | 12400 | 0.2238 | - | - |
|
494 |
+
| 1.1973 | 12500 | 0.1957 | - | - |
|
495 |
+
| 1.2069 | 12600 | 0.2075 | - | - |
|
496 |
+
| 1.2165 | 12700 | 0.2014 | - | - |
|
497 |
+
| 1.2261 | 12800 | 0.2222 | - | - |
|
498 |
+
| 1.2357 | 12900 | 0.2059 | - | - |
|
499 |
+
| 1.2452 | 13000 | 0.2051 | 0.6077 | 0.7651 |
|
500 |
+
| 1.2548 | 13100 | 0.2076 | - | - |
|
501 |
+
| 1.2644 | 13200 | 0.226 | - | - |
|
502 |
+
| 1.2740 | 13300 | 0.1941 | - | - |
|
503 |
+
| 1.2836 | 13400 | 0.2053 | - | - |
|
504 |
+
| 1.2931 | 13500 | 0.2003 | - | - |
|
505 |
+
| 1.3027 | 13600 | 0.1947 | - | - |
|
506 |
+
| 1.3123 | 13700 | 0.1914 | - | - |
|
507 |
+
| 1.3219 | 13800 | 0.1956 | - | - |
|
508 |
+
| 1.3314 | 13900 | 0.1862 | - | - |
|
509 |
+
| 1.3410 | 14000 | 0.1873 | 0.6110 | 0.7646 |
|
510 |
+
| 1.3506 | 14100 | 0.1812 | - | - |
|
511 |
+
| 1.3602 | 14200 | 0.1828 | - | - |
|
512 |
+
| 1.3698 | 14300 | 0.1696 | - | - |
|
513 |
+
| 1.3793 | 14400 | 0.1705 | - | - |
|
514 |
+
| 1.3889 | 14500 | 0.1746 | - | - |
|
515 |
+
| 1.3985 | 14600 | 0.1756 | - | - |
|
516 |
+
| 1.4081 | 14700 | 0.1682 | - | - |
|
517 |
+
| 1.4177 | 14800 | 0.1769 | - | - |
|
518 |
+
| 1.4272 | 14900 | 0.1795 | - | - |
|
519 |
+
| 1.4368 | 15000 | 0.1736 | 0.6278 | 0.7616 |
|
520 |
+
| 1.4464 | 15100 | 0.1546 | - | - |
|
521 |
+
| 1.4560 | 15200 | 0.1643 | - | - |
|
522 |
+
| 1.4656 | 15300 | 0.1903 | - | - |
|
523 |
+
| 1.4751 | 15400 | 0.1902 | - | - |
|
524 |
+
| 1.4847 | 15500 | 0.1531 | - | - |
|
525 |
+
| 1.4943 | 15600 | 0.1711 | - | - |
|
526 |
+
| 1.5039 | 15700 | 0.1546 | - | - |
|
527 |
+
| 1.5134 | 15800 | 0.1503 | - | - |
|
528 |
+
| 1.5230 | 15900 | 0.1429 | - | - |
|
529 |
+
| 1.5326 | 16000 | 0.147 | 0.6306 | 0.7623 |
|
530 |
+
| 1.5422 | 16100 | 0.1507 | - | - |
|
531 |
+
| 1.5518 | 16200 | 0.152 | - | - |
|
532 |
+
| 1.5613 | 16300 | 0.1602 | - | - |
|
533 |
+
| 1.5709 | 16400 | 0.1541 | - | - |
|
534 |
+
| 1.5805 | 16500 | 0.1491 | - | - |
|
535 |
+
| 1.5901 | 16600 | 0.1378 | - | - |
|
536 |
+
| 1.5997 | 16700 | 0.1505 | - | - |
|
537 |
+
| 1.6092 | 16800 | 0.1334 | - | - |
|
538 |
+
| 1.6188 | 16900 | 0.1288 | - | - |
|
539 |
+
| 1.6284 | 17000 | 0.1168 | 0.6372 | 0.7629 |
|
540 |
+
| 1.6380 | 17100 | 0.135 | - | - |
|
541 |
+
| 1.6475 | 17200 | 0.1239 | - | - |
|
542 |
+
| 1.6571 | 17300 | 0.1398 | - | - |
|
543 |
+
| 1.6667 | 17400 | 0.1292 | - | - |
|
544 |
+
| 1.6763 | 17500 | 0.1414 | - | - |
|
545 |
+
| 1.6859 | 17600 | 0.116 | - | - |
|
546 |
+
| 1.6954 | 17700 | 0.1302 | - | - |
|
547 |
+
| 1.7050 | 17800 | 0.1194 | - | - |
|
548 |
+
| 1.7146 | 17900 | 0.1394 | - | - |
|
549 |
+
| 1.7242 | 18000 | 0.1316 | 0.6561 | 0.7592 |
|
550 |
+
| 1.7338 | 18100 | 0.1246 | - | - |
|
551 |
+
| 1.7433 | 18200 | 0.1277 | - | - |
|
552 |
+
| 1.7529 | 18300 | 0.1055 | - | - |
|
553 |
+
| 1.7625 | 18400 | 0.1211 | - | - |
|
554 |
+
| 1.7721 | 18500 | 0.1107 | - | - |
|
555 |
+
| 1.7817 | 18600 | 0.1145 | - | - |
|
556 |
+
| 1.7912 | 18700 | 0.1162 | - | - |
|
557 |
+
| 1.8008 | 18800 | 0.1114 | - | - |
|
558 |
+
| 1.8104 | 18900 | 0.1182 | - | - |
|
559 |
+
| 1.8200 | 19000 | 0.1152 | 0.6567 | 0.7591 |
|
560 |
+
| 1.8295 | 19100 | 0.1212 | - | - |
|
561 |
+
| 1.8391 | 19200 | 0.1253 | - | - |
|
562 |
+
| 1.8487 | 19300 | 0.115 | - | - |
|
563 |
+
| 1.8583 | 19400 | 0.1292 | - | - |
|
564 |
+
| 1.8679 | 19500 | 0.1151 | - | - |
|
565 |
+
| 1.8774 | 19600 | 0.1005 | - | - |
|
566 |
+
| 1.8870 | 19700 | 0.1079 | - | - |
|
567 |
+
| 1.8966 | 19800 | 0.0954 | - | - |
|
568 |
+
| 1.9062 | 19900 | 0.1045 | - | - |
|
569 |
+
| 1.9158 | 20000 | 0.1086 | 0.6727 | 0.7554 |
|
570 |
+
| 1.9253 | 20100 | 0.1174 | - | - |
|
571 |
+
| 1.9349 | 20200 | 0.1108 | - | - |
|
572 |
+
| 1.9445 | 20300 | 0.0992 | - | - |
|
573 |
+
| 1.9541 | 20400 | 0.1168 | - | - |
|
574 |
+
| 1.9636 | 20500 | 0.1028 | - | - |
|
575 |
+
| 1.9732 | 20600 | 0.1126 | - | - |
|
576 |
+
| 1.9828 | 20700 | 0.1113 | - | - |
|
577 |
+
| 1.9924 | 20800 | 0.1065 | - | - |
|
578 |
+
| 2.0020 | 20900 | 0.078 | - | - |
|
579 |
+
| 2.0115 | 21000 | 0.0921 | 0.6727 | 0.7568 |
|
580 |
+
| 2.0211 | 21100 | 0.0866 | - | - |
|
581 |
+
| 2.0307 | 21200 | 0.0918 | - | - |
|
582 |
+
| 2.0403 | 21300 | 0.0893 | - | - |
|
583 |
+
| 2.0499 | 21400 | 0.0882 | - | - |
|
584 |
+
| 2.0594 | 21500 | 0.0986 | - | - |
|
585 |
+
| 2.0690 | 21600 | 0.0923 | - | - |
|
586 |
+
| 2.0786 | 21700 | 0.0805 | - | - |
|
587 |
+
| 2.0882 | 21800 | 0.0887 | - | - |
|
588 |
+
| 2.0978 | 21900 | 0.1 | - | - |
|
589 |
+
| 2.1073 | 22000 | 0.0957 | 0.6854 | 0.7539 |
|
590 |
+
| 2.1169 | 22100 | 0.0921 | - | - |
|
591 |
+
| 2.1265 | 22200 | 0.0892 | - | - |
|
592 |
+
| 2.1361 | 22300 | 0.0805 | - | - |
|
593 |
+
| 2.1456 | 22400 | 0.0767 | - | - |
|
594 |
+
| 2.1552 | 22500 | 0.0715 | - | - |
|
595 |
+
| 2.1648 | 22600 | 0.083 | - | - |
|
596 |
+
| 2.1744 | 22700 | 0.0755 | - | - |
|
597 |
+
| 2.1840 | 22800 | 0.075 | - | - |
|
598 |
+
| 2.1935 | 22900 | 0.0724 | - | - |
|
599 |
+
| 2.2031 | 23000 | 0.0822 | 0.6913 | 0.7534 |
|
600 |
+
| 2.2127 | 23100 | 0.0623 | - | - |
|
601 |
+
| 2.2223 | 23200 | 0.0765 | - | - |
|
602 |
+
| 2.2319 | 23300 | 0.0755 | - | - |
|
603 |
+
| 2.2414 | 23400 | 0.0786 | - | - |
|
604 |
+
| 2.2510 | 23500 | 0.0651 | - | - |
|
605 |
+
| 2.2606 | 23600 | 0.081 | - | - |
|
606 |
+
| 2.2702 | 23700 | 0.0664 | - | - |
|
607 |
+
| 2.2797 | 23800 | 0.0906 | - | - |
|
608 |
+
| 2.2893 | 23900 | 0.0714 | - | - |
|
609 |
+
| 2.2989 | 24000 | 0.0703 | 0.6971 | 0.7536 |
|
610 |
+
| 2.3085 | 24100 | 0.0672 | - | - |
|
611 |
+
| 2.3181 | 24200 | 0.0754 | - | - |
|
612 |
+
| 2.3276 | 24300 | 0.0687 | - | - |
|
613 |
+
| 2.3372 | 24400 | 0.0668 | - | - |
|
614 |
+
| 2.3468 | 24500 | 0.0616 | - | - |
|
615 |
+
| 2.3564 | 24600 | 0.0693 | - | - |
|
616 |
+
| 2.3660 | 24700 | 0.0587 | - | - |
|
617 |
+
| 2.3755 | 24800 | 0.0612 | - | - |
|
618 |
+
| 2.3851 | 24900 | 0.0559 | - | - |
|
619 |
+
| 2.3947 | 25000 | 0.0676 | 0.7128 | 0.7497 |
|
620 |
+
| 2.4043 | 25100 | 0.0607 | - | - |
|
621 |
+
| 2.4139 | 25200 | 0.0727 | - | - |
|
622 |
+
| 2.4234 | 25300 | 0.0573 | - | - |
|
623 |
+
| 2.4330 | 25400 | 0.0717 | - | - |
|
624 |
+
| 2.4426 | 25500 | 0.0493 | - | - |
|
625 |
+
| 2.4522 | 25600 | 0.0558 | - | - |
|
626 |
+
| 2.4617 | 25700 | 0.0676 | - | - |
|
627 |
+
| 2.4713 | 25800 | 0.0757 | - | - |
|
628 |
+
| 2.4809 | 25900 | 0.0735 | - | - |
|
629 |
+
| 2.4905 | 26000 | 0.056 | 0.7044 | 0.7513 |
|
630 |
+
| 2.5001 | 26100 | 0.0687 | - | - |
|
631 |
+
| 2.5096 | 26200 | 0.0592 | - | - |
|
632 |
+
| 2.5192 | 26300 | 0.057 | - | - |
|
633 |
+
| 2.5288 | 26400 | 0.0444 | - | - |
|
634 |
+
| 2.5384 | 26500 | 0.0547 | - | - |
|
635 |
+
| 2.5480 | 26600 | 0.0605 | - | - |
|
636 |
+
| 2.5575 | 26700 | 0.066 | - | - |
|
637 |
+
| 2.5671 | 26800 | 0.0631 | - | - |
|
638 |
+
| 2.5767 | 26900 | 0.0634 | - | - |
|
639 |
+
| 2.5863 | 27000 | 0.0537 | 0.7127 | 0.7512 |
|
640 |
+
| 2.5958 | 27100 | 0.0535 | - | - |
|
641 |
+
| 2.6054 | 27200 | 0.0572 | - | - |
|
642 |
+
| 2.6150 | 27300 | 0.0473 | - | - |
|
643 |
+
| 2.6246 | 27400 | 0.0418 | - | - |
|
644 |
+
| 2.6342 | 27500 | 0.0585 | - | - |
|
645 |
+
| 2.6437 | 27600 | 0.0475 | - | - |
|
646 |
+
| 2.6533 | 27700 | 0.0549 | - | - |
|
647 |
+
| 2.6629 | 27800 | 0.0452 | - | - |
|
648 |
+
| 2.6725 | 27900 | 0.0514 | - | - |
|
649 |
+
| 2.6821 | 28000 | 0.0449 | 0.7337 | 0.7482 |
|
650 |
+
| 2.6916 | 28100 | 0.0544 | - | - |
|
651 |
+
| 2.7012 | 28200 | 0.041 | - | - |
|
652 |
+
| 2.7108 | 28300 | 0.0599 | - | - |
|
653 |
+
| 2.7204 | 28400 | 0.057 | - | - |
|
654 |
+
| 2.7300 | 28500 | 0.0503 | - | - |
|
655 |
+
| 2.7395 | 28600 | 0.0487 | - | - |
|
656 |
+
| 2.7491 | 28700 | 0.0503 | - | - |
|
657 |
+
| 2.7587 | 28800 | 0.0446 | - | - |
|
658 |
+
| 2.7683 | 28900 | 0.042 | - | - |
|
659 |
+
| 2.7778 | 29000 | 0.0501 | 0.7422 | 0.7469 |
|
660 |
+
| 2.7874 | 29100 | 0.0494 | - | - |
|
661 |
+
| 2.7970 | 29200 | 0.0423 | - | - |
|
662 |
+
| 2.8066 | 29300 | 0.0508 | - | - |
|
663 |
+
| 2.8162 | 29400 | 0.0459 | - | - |
|
664 |
+
| 2.8257 | 29500 | 0.0514 | - | - |
|
665 |
+
| 2.8353 | 29600 | 0.0484 | - | - |
|
666 |
+
| 2.8449 | 29700 | 0.0571 | - | - |
|
667 |
+
| 2.8545 | 29800 | 0.0558 | - | - |
|
668 |
+
| 2.8641 | 29900 | 0.0466 | - | - |
|
669 |
+
| 2.8736 | 30000 | 0.0465 | 0.7478 | 0.7447 |
|
670 |
+
| 2.8832 | 30100 | 0.0463 | - | - |
|
671 |
+
| 2.8928 | 30200 | 0.0362 | - | - |
|
672 |
+
| 2.9024 | 30300 | 0.0435 | - | - |
|
673 |
+
| 2.9119 | 30400 | 0.0419 | - | - |
|
674 |
+
| 2.9215 | 30500 | 0.046 | - | - |
|
675 |
+
| 2.9311 | 30600 | 0.0451 | - | - |
|
676 |
+
| 2.9407 | 30700 | 0.0458 | - | - |
|
677 |
+
| 2.9503 | 30800 | 0.052 | - | - |
|
678 |
+
| 2.9598 | 30900 | 0.0454 | - | - |
|
679 |
+
| 2.9694 | 31000 | 0.0433 | 0.7580 | 0.745 |
|
680 |
+
| 2.9790 | 31100 | 0.0438 | - | - |
|
681 |
+
| 2.9886 | 31200 | 0.0537 | - | - |
|
682 |
+
| 2.9982 | 31300 | 0.033 | - | - |
|
683 |
+
| 3.0077 | 31400 | 0.0384 | - | - |
|
684 |
+
| 3.0173 | 31500 | 0.0349 | - | - |
|
685 |
+
| 3.0269 | 31600 | 0.0365 | - | - |
|
686 |
+
| 3.0365 | 31700 | 0.0397 | - | - |
|
687 |
+
| 3.0460 | 31800 | 0.0396 | - | - |
|
688 |
+
| 3.0556 | 31900 | 0.0358 | - | - |
|
689 |
+
| 3.0652 | 32000 | 0.0443 | 0.7592 | 0.7454 |
|
690 |
+
| 3.0748 | 32100 | 0.0323 | - | - |
|
691 |
+
| 3.0844 | 32200 | 0.0418 | - | - |
|
692 |
+
| 3.0939 | 32300 | 0.0463 | - | - |
|
693 |
+
| 3.1035 | 32400 | 0.0397 | - | - |
|
694 |
+
| 3.1131 | 32500 | 0.0425 | - | - |
|
695 |
+
| 3.1227 | 32600 | 0.0406 | - | - |
|
696 |
+
| 3.1323 | 32700 | 0.0454 | - | - |
|
697 |
+
| 3.1418 | 32800 | 0.0287 | - | - |
|
698 |
+
| 3.1514 | 32900 | 0.0267 | - | - |
|
699 |
+
| 3.1610 | 33000 | 0.0341 | 0.7672 | 0.7431 |
|
700 |
+
| 3.1706 | 33100 | 0.0357 | - | - |
|
701 |
+
| 3.1802 | 33200 | 0.0322 | - | - |
|
702 |
+
| 3.1897 | 33300 | 0.0367 | - | - |
|
703 |
+
| 3.1993 | 33400 | 0.0419 | - | - |
|
704 |
+
| 3.2089 | 33500 | 0.0349 | - | - |
|
705 |
+
| 3.2185 | 33600 | 0.0327 | - | - |
|
706 |
+
| 3.2280 | 33700 | 0.0377 | - | - |
|
707 |
+
| 3.2376 | 33800 | 0.0353 | - | - |
|
708 |
+
| 3.2472 | 33900 | 0.0305 | - | - |
|
709 |
+
| 3.2568 | 34000 | 0.0362 | 0.7668 | 0.7463 |
|
710 |
+
| 3.2664 | 34100 | 0.0311 | - | - |
|
711 |
+
| 3.2759 | 34200 | 0.0405 | - | - |
|
712 |
+
| 3.2855 | 34300 | 0.0401 | - | - |
|
713 |
+
| 3.2951 | 34400 | 0.0361 | - | - |
|
714 |
+
| 3.3047 | 34500 | 0.0302 | - | - |
|
715 |
+
| 3.3143 | 34600 | 0.0379 | - | - |
|
716 |
+
| 3.3238 | 34700 | 0.03 | - | - |
|
717 |
+
| 3.3334 | 34800 | 0.039 | - | - |
|
718 |
+
| 3.3430 | 34900 | 0.0288 | - | - |
|
719 |
+
| 3.3526 | 35000 | 0.0318 | 0.7782 | 0.7436 |
|
720 |
+
| 3.3621 | 35100 | 0.0283 | - | - |
|
721 |
+
| 3.3717 | 35200 | 0.029 | - | - |
|
722 |
+
| 3.3813 | 35300 | 0.0287 | - | - |
|
723 |
+
| 3.3909 | 35400 | 0.0343 | - | - |
|
724 |
+
| 3.4005 | 35500 | 0.0326 | - | - |
|
725 |
+
| 3.4100 | 35600 | 0.031 | - | - |
|
726 |
+
| 3.4196 | 35700 | 0.0304 | - | - |
|
727 |
+
| 3.4292 | 35800 | 0.0314 | - | - |
|
728 |
+
| 3.4388 | 35900 | 0.0286 | - | - |
|
729 |
+
| 3.4484 | 36000 | 0.0229 | 0.7978 | 0.7428 |
|
730 |
+
| 3.4579 | 36100 | 0.0258 | - | - |
|
731 |
+
| 3.4675 | 36200 | 0.043 | - | - |
|
732 |
+
| 3.4771 | 36300 | 0.042 | - | - |
|
733 |
+
| 3.4867 | 36400 | 0.029 | - | - |
|
734 |
+
| 3.4963 | 36500 | 0.0343 | - | - |
|
735 |
+
| 3.5058 | 36600 | 0.0317 | - | - |
|
736 |
+
| 3.5154 | 36700 | 0.0307 | - | - |
|
737 |
+
| 3.5250 | 36800 | 0.0251 | - | - |
|
738 |
+
| 3.5346 | 36900 | 0.025 | - | - |
|
739 |
+
| 3.5441 | 37000 | 0.0309 | 0.8002 | 0.7446 |
|
740 |
+
| 3.5537 | 37100 | 0.031 | - | - |
|
741 |
+
| 3.5633 | 37200 | 0.0345 | - | - |
|
742 |
+
| 3.5729 | 37300 | 0.0332 | - | - |
|
743 |
+
| 3.5825 | 37400 | 0.0346 | - | - |
|
744 |
+
| 3.5920 | 37500 | 0.026 | - | - |
|
745 |
+
| 3.6016 | 37600 | 0.0293 | - | - |
|
746 |
+
| 3.6112 | 37700 | 0.0268 | - | - |
|
747 |
+
| 3.6208 | 37800 | 0.0264 | - | - |
|
748 |
+
| 3.6304 | 37900 | 0.0259 | - | - |
|
749 |
+
| 3.6399 | 38000 | 0.032 | 0.7896 | 0.7438 |
|
750 |
+
| 3.6495 | 38100 | 0.0246 | - | - |
|
751 |
+
| 3.6591 | 38200 | 0.0279 | - | - |
|
752 |
+
| 3.6687 | 38300 | 0.0274 | - | - |
|
753 |
+
| 3.6782 | 38400 | 0.0241 | - | - |
|
754 |
+
| 3.6878 | 38500 | 0.027 | - | - |
|
755 |
+
| 3.6974 | 38600 | 0.022 | - | - |
|
756 |
+
| 3.7070 | 38700 | 0.0305 | - | - |
|
757 |
+
| 3.7166 | 38800 | 0.0368 | - | - |
|
758 |
+
| 3.7261 | 38900 | 0.0304 | - | - |
|
759 |
+
| 3.7357 | 39000 | 0.0249 | 0.7978 | 0.7437 |
|
760 |
+
| 3.7453 | 39100 | 0.0312 | - | - |
|
761 |
+
| 3.7549 | 39200 | 0.0257 | - | - |
|
762 |
+
| 3.7645 | 39300 | 0.0273 | - | - |
|
763 |
+
| 3.7740 | 39400 | 0.0209 | - | - |
|
764 |
+
| 3.7836 | 39500 | 0.0298 | - | - |
|
765 |
+
| 3.7932 | 39600 | 0.0282 | - | - |
|
766 |
+
| 3.8028 | 39700 | 0.028 | - | - |
|
767 |
+
| 3.8124 | 39800 | 0.0279 | - | - |
|
768 |
+
| 3.8219 | 39900 | 0.0283 | - | - |
|
769 |
+
| 3.8315 | 40000 | 0.0239 | 0.7982 | 0.7424 |
|
770 |
+
| 3.8411 | 40100 | 0.0378 | - | - |
|
771 |
+
| 3.8507 | 40200 | 0.028 | - | - |
|
772 |
+
| 3.8602 | 40300 | 0.0321 | - | - |
|
773 |
+
| 3.8698 | 40400 | 0.0289 | - | - |
|
774 |
+
| 3.8794 | 40500 | 0.027 | - | - |
|
775 |
+
| 3.8890 | 40600 | 0.0224 | - | - |
|
776 |
+
| 3.8986 | 40700 | 0.0236 | - | - |
|
777 |
+
| 3.9081 | 40800 | 0.0267 | - | - |
|
778 |
+
| 3.9177 | 40900 | 0.0228 | - | - |
|
779 |
+
| 3.9273 | 41000 | 0.0322 | 0.8101 | 0.7415 |
|
780 |
+
| 3.9369 | 41100 | 0.0262 | - | - |
|
781 |
+
| 3.9465 | 41200 | 0.0276 | - | - |
|
782 |
+
| 3.9560 | 41300 | 0.0292 | - | - |
|
783 |
+
| 3.9656 | 41400 | 0.0278 | - | - |
|
784 |
+
| 3.9752 | 41500 | 0.0262 | - | - |
|
785 |
+
| 3.9848 | 41600 | 0.0306 | - | - |
|
786 |
+
| 3.9943 | 41700 | 0.0238 | - | - |
|
787 |
+
| 4.0039 | 41800 | 0.0165 | - | - |
|
788 |
+
| 4.0135 | 41900 | 0.0241 | - | - |
|
789 |
+
| 4.0231 | 42000 | 0.0211 | 0.8092 | 0.742 |
|
790 |
+
| 4.0327 | 42100 | 0.0257 | - | - |
|
791 |
+
| 4.0422 | 42200 | 0.0236 | - | - |
|
792 |
+
| 4.0518 | 42300 | 0.0254 | - | - |
|
793 |
+
| 4.0614 | 42400 | 0.0248 | - | - |
|
794 |
+
| 4.0710 | 42500 | 0.026 | - | - |
|
795 |
+
| 4.0806 | 42600 | 0.0245 | - | - |
|
796 |
+
| 4.0901 | 42700 | 0.0325 | - | - |
|
797 |
+
| 4.0997 | 42800 | 0.0209 | - | - |
|
798 |
+
| 4.1093 | 42900 | 0.033 | - | - |
|
799 |
+
| 4.1189 | 43000 | 0.0265 | 0.8105 | 0.7412 |
|
800 |
+
| 4.1285 | 43100 | 0.027 | - | - |
|
801 |
+
| 4.1380 | 43200 | 0.0208 | - | - |
|
802 |
+
| 4.1476 | 43300 | 0.0179 | - | - |
|
803 |
+
| 4.1572 | 43400 | 0.0194 | - | - |
|
804 |
+
| 4.1668 | 43500 | 0.0217 | - | - |
|
805 |
+
| 4.1763 | 43600 | 0.0212 | - | - |
|
806 |
+
| 4.1859 | 43700 | 0.0226 | - | - |
|
807 |
+
| 4.1955 | 43800 | 0.0252 | - | - |
|
808 |
+
| 4.2051 | 43900 | 0.0293 | - | - |
|
809 |
+
| 4.2147 | 44000 | 0.0216 | 0.8029 | 0.7414 |
|
810 |
+
| 4.2242 | 44100 | 0.029 | - | - |
|
811 |
+
| 4.2338 | 44200 | 0.0216 | - | - |
|
812 |
+
| 4.2434 | 44300 | 0.0251 | - | - |
|
813 |
+
| 4.2530 | 44400 | 0.018 | - | - |
|
814 |
+
| 4.2626 | 44500 | 0.025 | - | - |
|
815 |
+
| 4.2721 | 44600 | 0.0225 | - | - |
|
816 |
+
| 4.2817 | 44700 | 0.0303 | - | - |
|
817 |
+
| 4.2913 | 44800 | 0.028 | - | - |
|
818 |
+
| 4.3009 | 44900 | 0.0203 | - | - |
|
819 |
+
| 4.3104 | 45000 | 0.026 | 0.8081 | 0.7405 |
|
820 |
+
|
821 |
+
</details>
|
822 |
+
|
823 |
+
### Framework Versions
|
824 |
+
- Python: 3.10.12
|
825 |
+
- Sentence Transformers: 3.0.0
|
826 |
+
- Transformers: 4.38.2
|
827 |
+
- PyTorch: 2.1.2+cu121
|
828 |
+
- Accelerate: 0.27.2
|
829 |
+
- Datasets: 2.19.1
|
830 |
+
- Tokenizers: 0.15.2
|
831 |
+
|
832 |
+
## Citation
|
833 |
+
|
834 |
+
### BibTeX
|
835 |
+
|
836 |
+
#### Sentence Transformers
|
837 |
+
```bibtex
|
838 |
+
@inproceedings{reimers-2019-sentence-bert,
|
839 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
840 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
841 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
842 |
+
month = "11",
|
843 |
+
year = "2019",
|
844 |
+
publisher = "Association for Computational Linguistics",
|
845 |
+
url = "https://arxiv.org/abs/1908.10084",
|
846 |
+
}
|
847 |
+
```
|
848 |
+
|
849 |
+
#### CachedMultipleNegativesRankingLoss
|
850 |
+
```bibtex
|
851 |
+
@misc{gao2021scaling,
|
852 |
+
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
|
853 |
+
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
|
854 |
+
year={2021},
|
855 |
+
eprint={2101.06983},
|
856 |
+
archivePrefix={arXiv},
|
857 |
+
primaryClass={cs.LG}
|
858 |
+
}
|
859 |
+
```
|
860 |
+
|
861 |
+
<!--
|
862 |
+
## Glossary
|
863 |
+
|
864 |
+
*Clearly define terms in order to be accessible across audiences.*
|
865 |
+
-->
|
866 |
+
|
867 |
+
<!--
|
868 |
+
## Model Card Authors
|
869 |
+
|
870 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
871 |
+
-->
|
872 |
+
|
873 |
+
<!--
|
874 |
+
## Model Card Contact
|
875 |
+
|
876 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
877 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "models/nomic-embed-text-esci/checkpoint-45000",
|
3 |
+
"activation_function": "swiglu",
|
4 |
+
"architectures": [
|
5 |
+
"NomicBertModel"
|
6 |
+
],
|
7 |
+
"attn_pdrop": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_hf_nomic_bert.NomicBertConfig",
|
10 |
+
"AutoModel": "modeling_hf_nomic_bert.NomicBertModel",
|
11 |
+
"AutoModelForMaskedLM": "nomic-ai/nomic-bert-2048--modeling_hf_nomic_bert.NomicBertForPreTraining"
|
12 |
+
},
|
13 |
+
"bos_token_id": null,
|
14 |
+
"causal": false,
|
15 |
+
"dense_seq_output": true,
|
16 |
+
"embd_pdrop": 0.0,
|
17 |
+
"eos_token_id": null,
|
18 |
+
"fused_bias_fc": true,
|
19 |
+
"fused_dropout_add_ln": true,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"layer_norm_epsilon": 1e-12,
|
22 |
+
"max_trained_positions": 2048,
|
23 |
+
"mlp_fc1_bias": false,
|
24 |
+
"mlp_fc2_bias": false,
|
25 |
+
"model_type": "nomic_bert",
|
26 |
+
"n_embd": 768,
|
27 |
+
"n_head": 12,
|
28 |
+
"n_inner": 3072,
|
29 |
+
"n_layer": 12,
|
30 |
+
"n_positions": 8192,
|
31 |
+
"pad_vocab_size_multiple": 64,
|
32 |
+
"parallel_block": false,
|
33 |
+
"parallel_block_tied_norm": false,
|
34 |
+
"prenorm": false,
|
35 |
+
"qkv_proj_bias": false,
|
36 |
+
"reorder_and_upcast_attn": false,
|
37 |
+
"resid_pdrop": 0.0,
|
38 |
+
"rotary_emb_base": 1000,
|
39 |
+
"rotary_emb_fraction": 1.0,
|
40 |
+
"rotary_emb_interleaved": false,
|
41 |
+
"rotary_emb_scale_base": null,
|
42 |
+
"rotary_scaling_factor": null,
|
43 |
+
"scale_attn_by_inverse_layer_idx": false,
|
44 |
+
"scale_attn_weights": true,
|
45 |
+
"summary_activation": null,
|
46 |
+
"summary_first_dropout": 0.0,
|
47 |
+
"summary_proj_to_labels": true,
|
48 |
+
"summary_type": "cls_index",
|
49 |
+
"summary_use_proj": true,
|
50 |
+
"torch_dtype": "float32",
|
51 |
+
"transformers_version": "4.38.2",
|
52 |
+
"type_vocab_size": 2,
|
53 |
+
"use_cache": true,
|
54 |
+
"use_flash_attn": true,
|
55 |
+
"use_rms_norm": false,
|
56 |
+
"use_xentropy": true,
|
57 |
+
"vocab_size": 30528
|
58 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.4.0.dev0",
|
4 |
+
"transformers": "4.37.2",
|
5 |
+
"pytorch": "2.1.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
configuration_hf_nomic_bert.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Config
|
2 |
+
|
3 |
+
|
4 |
+
class NomicBertConfig(GPT2Config):
|
5 |
+
model_type = "nomic_bert"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
prenorm=False,
|
10 |
+
parallel_block=False,
|
11 |
+
parallel_block_tied_norm=False,
|
12 |
+
rotary_emb_fraction=0.0,
|
13 |
+
fused_dropout_add_ln=False,
|
14 |
+
fused_bias_fc=False,
|
15 |
+
use_flash_attn=False,
|
16 |
+
use_xentropy=False,
|
17 |
+
qkv_proj_bias=True,
|
18 |
+
rotary_emb_base=10_000,
|
19 |
+
rotary_emb_scale_base=None,
|
20 |
+
rotary_emb_interleaved=False,
|
21 |
+
mlp_fc1_bias=True,
|
22 |
+
mlp_fc2_bias=True,
|
23 |
+
use_rms_norm=False,
|
24 |
+
causal=False,
|
25 |
+
type_vocab_size=2,
|
26 |
+
dense_seq_output=True,
|
27 |
+
pad_vocab_size_multiple=1,
|
28 |
+
tie_word_embeddings=True,
|
29 |
+
rotary_scaling_factor=None,
|
30 |
+
max_trained_positions=2048,
|
31 |
+
**kwargs,
|
32 |
+
):
|
33 |
+
self.prenorm = prenorm
|
34 |
+
self.parallel_block = parallel_block
|
35 |
+
self.parallel_block_tied_norm = parallel_block_tied_norm
|
36 |
+
self.rotary_emb_fraction = rotary_emb_fraction
|
37 |
+
self.tie_word_embeddings = tie_word_embeddings
|
38 |
+
self.fused_dropout_add_ln = fused_dropout_add_ln
|
39 |
+
self.fused_bias_fc = fused_bias_fc
|
40 |
+
self.use_flash_attn = use_flash_attn
|
41 |
+
self.use_xentropy = use_xentropy
|
42 |
+
self.qkv_proj_bias = qkv_proj_bias
|
43 |
+
self.rotary_emb_base = rotary_emb_base
|
44 |
+
self.rotary_emb_scale_base = rotary_emb_scale_base
|
45 |
+
self.rotary_emb_interleaved = rotary_emb_interleaved
|
46 |
+
self.mlp_fc1_bias = mlp_fc1_bias
|
47 |
+
self.mlp_fc2_bias = mlp_fc2_bias
|
48 |
+
self.use_rms_norm = use_rms_norm
|
49 |
+
self.causal = causal
|
50 |
+
self.type_vocab_size = type_vocab_size
|
51 |
+
self.dense_seq_output = dense_seq_output
|
52 |
+
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
53 |
+
self.rotary_scaling_factor = rotary_scaling_factor
|
54 |
+
self.max_trained_positions = max_trained_positions
|
55 |
+
|
56 |
+
super().__init__(**kwargs)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69fe41349d5efc8669c5d8ac9e0fe86fec944f8f2886d10641b6ab278c7f634b
|
3 |
+
size 546938168
|
modeling_hf_nomic_bert.py
ADDED
@@ -0,0 +1,1234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, Tri Dao.
|
2 |
+
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
|
3 |
+
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
|
4 |
+
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
|
5 |
+
|
6 |
+
import logging
|
7 |
+
|
8 |
+
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
|
9 |
+
import os
|
10 |
+
import re
|
11 |
+
from collections import OrderedDict
|
12 |
+
from functools import partial
|
13 |
+
from typing import List, Optional, Tuple, Union
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from einops import rearrange, repeat
|
19 |
+
from safetensors.torch import load_file as safe_load_file
|
20 |
+
from transformers import GPT2Config, PreTrainedModel
|
21 |
+
from transformers.models.bert.modeling_bert import (
|
22 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
23 |
+
MaskedLMOutput,
|
24 |
+
SequenceClassifierOutput,
|
25 |
+
)
|
26 |
+
from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
27 |
+
from transformers.utils.hub import cached_file, get_checkpoint_shard_files
|
28 |
+
|
29 |
+
from .configuration_hf_nomic_bert import NomicBertConfig
|
30 |
+
|
31 |
+
logger = logging.getLogger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
# adapted from flash attention, added safe serialization option for hf models
|
35 |
+
def state_dict_from_pretrained(model_name, safe_serialization=False, device=None, dtype=None):
|
36 |
+
# If not fp32, then we don't want to load directly to the GPU
|
37 |
+
mapped_device = "cpu" if dtype not in [torch.float32, None] else device
|
38 |
+
is_sharded = False
|
39 |
+
load_safe = False
|
40 |
+
resolved_archive_file = None
|
41 |
+
|
42 |
+
weights_path = os.path.join(model_name, WEIGHTS_NAME)
|
43 |
+
weights_index_path = os.path.join(model_name, WEIGHTS_INDEX_NAME)
|
44 |
+
safe_weights_path = os.path.join(model_name, SAFE_WEIGHTS_NAME)
|
45 |
+
safe_weights_index_path = os.path.join(model_name, SAFE_WEIGHTS_INDEX_NAME)
|
46 |
+
|
47 |
+
if os.path.isfile(weights_path):
|
48 |
+
resolved_archive_file = cached_file(model_name, WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
|
49 |
+
elif os.path.isfile(weights_index_path):
|
50 |
+
resolved_archive_file = cached_file(model_name, WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False)
|
51 |
+
is_sharded = True
|
52 |
+
elif os.path.isfile(safe_weights_path):
|
53 |
+
resolved_archive_file = cached_file(model_name, SAFE_WEIGHTS_NAME, _raise_exceptions_for_missing_entries=False)
|
54 |
+
load_safe = True
|
55 |
+
elif os.path.isfile(safe_weights_index_path):
|
56 |
+
resolved_archive_file = cached_file(
|
57 |
+
model_name, SAFE_WEIGHTS_INDEX_NAME, _raise_exceptions_for_missing_entries=False
|
58 |
+
)
|
59 |
+
is_sharded = True
|
60 |
+
load_safe = True
|
61 |
+
else: # Try loading from HF hub instead of from local files
|
62 |
+
resolved_archive_file = None
|
63 |
+
for weight_name in [WEIGHTS_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME]:
|
64 |
+
resolved_archive_file = cached_file(
|
65 |
+
model_name, weight_name, _raise_exceptions_for_missing_entries=False
|
66 |
+
)
|
67 |
+
if resolved_archive_file is not None:
|
68 |
+
if weight_name in [SAFE_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME]:
|
69 |
+
load_safe = True
|
70 |
+
if weight_name in [WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME]:
|
71 |
+
is_sharded = True
|
72 |
+
break
|
73 |
+
|
74 |
+
if resolved_archive_file is None:
|
75 |
+
raise EnvironmentError(f"Model name {model_name} was not found.")
|
76 |
+
|
77 |
+
if load_safe:
|
78 |
+
loader = partial(safe_load_file, device=mapped_device)
|
79 |
+
else:
|
80 |
+
loader = partial(torch.load, map_location=mapped_device)
|
81 |
+
|
82 |
+
if is_sharded:
|
83 |
+
# resolved_archive_file becomes a list of files that point to the different
|
84 |
+
# checkpoint shards in this case.
|
85 |
+
resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(model_name, resolved_archive_file)
|
86 |
+
state_dict = {}
|
87 |
+
for sharded_file in resolved_archive_file:
|
88 |
+
state_dict.update(loader(sharded_file))
|
89 |
+
else:
|
90 |
+
state_dict = loader(resolved_archive_file)
|
91 |
+
# Convert dtype before moving to GPU to save memory
|
92 |
+
if dtype is not None:
|
93 |
+
state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
|
94 |
+
state_dict = {k: v.to(device=device) for k, v in state_dict.items()}
|
95 |
+
return state_dict
|
96 |
+
|
97 |
+
|
98 |
+
def filter_shapes(state_dict, model):
|
99 |
+
"""
|
100 |
+
Filters the state dict to match the current model shape.
|
101 |
+
"""
|
102 |
+
filtered_state_dict = {}
|
103 |
+
for key, value in state_dict.items():
|
104 |
+
if key in model.state_dict():
|
105 |
+
if value.shape == model.state_dict()[key].shape:
|
106 |
+
filtered_state_dict[key] = value
|
107 |
+
return filtered_state_dict
|
108 |
+
|
109 |
+
|
110 |
+
def remap_bert_state_dict(
|
111 |
+
state_dict,
|
112 |
+
config,
|
113 |
+
remove_bert=False,
|
114 |
+
remove_cls_weights=False,
|
115 |
+
add_pooling_layer=False,
|
116 |
+
):
|
117 |
+
"""
|
118 |
+
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
|
119 |
+
"""
|
120 |
+
|
121 |
+
def add_bert_prefix(key):
|
122 |
+
# prepend bert. to the key
|
123 |
+
if key.startswith("bert.") or key.startswith("cls."):
|
124 |
+
return key
|
125 |
+
return f"bert.{key}"
|
126 |
+
|
127 |
+
state_dict = OrderedDict((add_bert_prefix(k), v) for k, v in state_dict.items())
|
128 |
+
|
129 |
+
# LayerNorm
|
130 |
+
def key_mapping_ln_gamma_beta(key):
|
131 |
+
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
|
132 |
+
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
|
133 |
+
return key
|
134 |
+
|
135 |
+
state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
|
136 |
+
|
137 |
+
# Layers
|
138 |
+
def key_mapping_layers(key):
|
139 |
+
return re.sub(r"^bert.encoder.layer\.", "bert.encoder.layers.", key)
|
140 |
+
|
141 |
+
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
142 |
+
|
143 |
+
# LayerNorm
|
144 |
+
def key_mapping_ln(key):
|
145 |
+
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
|
146 |
+
key = re.sub(
|
147 |
+
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
|
148 |
+
r"bert.encoder.layers.\1.norm1.\2",
|
149 |
+
key,
|
150 |
+
)
|
151 |
+
key = re.sub(
|
152 |
+
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
|
153 |
+
r"bert.encoder.layers.\1.norm2.\2",
|
154 |
+
key,
|
155 |
+
)
|
156 |
+
key = re.sub(
|
157 |
+
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
|
158 |
+
r"cls.predictions.transform.layer_norm.\1",
|
159 |
+
key,
|
160 |
+
)
|
161 |
+
return key
|
162 |
+
|
163 |
+
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
164 |
+
|
165 |
+
# MLP
|
166 |
+
def key_mapping_mlp(key):
|
167 |
+
key = re.sub(
|
168 |
+
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
|
169 |
+
r"bert.encoder.layers.\1.mlp.fc1.\2",
|
170 |
+
key,
|
171 |
+
)
|
172 |
+
key = re.sub(
|
173 |
+
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
|
174 |
+
r"bert.encoder.layers.\1.mlp.fc2.\2",
|
175 |
+
key,
|
176 |
+
)
|
177 |
+
return key
|
178 |
+
|
179 |
+
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
180 |
+
|
181 |
+
# Attention
|
182 |
+
last_layer_subset = getattr(config, "last_layer_subset", False)
|
183 |
+
for d in range(config.num_hidden_layers):
|
184 |
+
if f"bert.encoder.layers.{d}.attention.self.query.weight" not in state_dict:
|
185 |
+
continue
|
186 |
+
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
|
187 |
+
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
|
188 |
+
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
|
189 |
+
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
|
190 |
+
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
|
191 |
+
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
|
192 |
+
if not (last_layer_subset and d == config.num_hidden_layers - 1):
|
193 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
|
194 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
|
195 |
+
else:
|
196 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wq.weight"] = Wq
|
197 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
|
198 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wq.bias"] = bq
|
199 |
+
state_dict[f"bert.encoder.layers.{d}.attn.Wkv.bias"] = torch.cat([bk, bv], dim=0)
|
200 |
+
|
201 |
+
def key_mapping_attn(key):
|
202 |
+
return re.sub(
|
203 |
+
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
|
204 |
+
r"bert.encoder.layers.\1.attn.out_proj.\2",
|
205 |
+
key,
|
206 |
+
)
|
207 |
+
|
208 |
+
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
209 |
+
|
210 |
+
def key_mapping_decoder_bias(key):
|
211 |
+
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
|
212 |
+
|
213 |
+
# remove nsp weights, we don't use
|
214 |
+
state_dict.pop("cls.seq_relationship.weight", None)
|
215 |
+
state_dict.pop("cls.seq_relationship.bias", None)
|
216 |
+
state_dict.pop("bert.embeddings.position_ids", None)
|
217 |
+
|
218 |
+
state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
|
219 |
+
|
220 |
+
if remove_cls_weights:
|
221 |
+
cls_weights = [
|
222 |
+
"cls.predictions.decoder.bias",
|
223 |
+
"cls.predictions.transform.dense.weight",
|
224 |
+
"cls.predictions.transform.dense.bias",
|
225 |
+
"cls.predictions.transform.layer_norm.weight",
|
226 |
+
"cls.predictions.transform.layer_norm.bias",
|
227 |
+
"cls.predictions.decoder.weight",
|
228 |
+
]
|
229 |
+
for weight in cls_weights:
|
230 |
+
state_dict.pop(weight, None)
|
231 |
+
|
232 |
+
# Word embedding
|
233 |
+
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
234 |
+
if pad_vocab_size_multiple > 1:
|
235 |
+
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
|
236 |
+
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
|
237 |
+
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
|
238 |
+
)
|
239 |
+
if not remove_cls_weights:
|
240 |
+
decoder_weight = state_dict["cls.predictions.decoder.weight"]
|
241 |
+
state_dict["cls.predictions.decoder.weight"] = F.pad(
|
242 |
+
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
|
243 |
+
)
|
244 |
+
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
|
245 |
+
# strongly negative (i.e. the decoder shouldn't predict those indices).
|
246 |
+
# TD [2022-05-09]: I don't think it affects the MLPerf training.
|
247 |
+
if "cls.predictions.decoder.bias" in state_dict:
|
248 |
+
decoder_bias = state_dict["cls.predictions.decoder.bias"]
|
249 |
+
state_dict["cls.predictions.decoder.bias"] = F.pad(
|
250 |
+
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
|
251 |
+
)
|
252 |
+
|
253 |
+
if add_pooling_layer is False:
|
254 |
+
pooler_weights = [
|
255 |
+
"bert.pooler.dense.weight",
|
256 |
+
"bert.pooler.dense.bias",
|
257 |
+
]
|
258 |
+
for key in pooler_weights:
|
259 |
+
state_dict.pop(key, None)
|
260 |
+
|
261 |
+
if remove_bert:
|
262 |
+
|
263 |
+
def remove_bert_prefix(key):
|
264 |
+
key = re.sub(r"^bert.", "", key)
|
265 |
+
return key
|
266 |
+
|
267 |
+
state_dict = OrderedDict((remove_bert_prefix(k), v) for k, v in state_dict.items())
|
268 |
+
|
269 |
+
return state_dict
|
270 |
+
|
271 |
+
|
272 |
+
class NomicBertPreTrainedModel(PreTrainedModel):
|
273 |
+
"""An abstract class to handle weights initialization and
|
274 |
+
a simple interface for dowloading and loading pretrained models.
|
275 |
+
"""
|
276 |
+
|
277 |
+
config_class = NomicBertConfig
|
278 |
+
base_model_prefix = "model"
|
279 |
+
supports_gradient_checkpointing = True
|
280 |
+
_no_split_modules = ["Block"]
|
281 |
+
_skip_keys_device_placement = "past_key_values"
|
282 |
+
|
283 |
+
def __init__(self, config, *inputs, **kwargs):
|
284 |
+
super().__init__(config)
|
285 |
+
if not isinstance(config, GPT2Config):
|
286 |
+
raise ValueError(
|
287 |
+
"Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
|
288 |
+
"To create a model from a Google pretrained model use "
|
289 |
+
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
290 |
+
self.__class__.__name__, self.__class__.__name__
|
291 |
+
)
|
292 |
+
)
|
293 |
+
self.config = config
|
294 |
+
|
295 |
+
@classmethod
|
296 |
+
def from_pretrained(cls, model_name, config=None, *inputs, **kwargs):
|
297 |
+
"""
|
298 |
+
Instantiate a NomicBertPreTrainedModel from a pre-trained model file or a pytorch state dict.
|
299 |
+
Download and cache the pre-trained model file if needed.
|
300 |
+
|
301 |
+
Params:
|
302 |
+
pretrained_model_name_or_path: either:
|
303 |
+
- a path or url to a pretrained model archive containing:
|
304 |
+
. `bert_config.json` a configuration file for the model
|
305 |
+
. `pytorch_model.bin` a PyTorch dump of a NomicBertForPretraining instance
|
306 |
+
- a path or url to a pretrained model archive containing:
|
307 |
+
. `bert_config.json` a configuration file for the model
|
308 |
+
. `model.chkpt` a TensorFlow checkpoint
|
309 |
+
*inputs, **kwargs: additional input for the specific NomicBert class
|
310 |
+
(ex: num_labels for NomicBertForSequenceClassification)
|
311 |
+
"""
|
312 |
+
# Instantiate model.
|
313 |
+
if config is None:
|
314 |
+
config = cls.config_class.from_pretrained(model_name)
|
315 |
+
remove_cls = cls != NomicBertForPreTraining
|
316 |
+
remove_bert_prefix = cls != NomicBertForPreTraining and cls != NomicBertForSequenceClassification
|
317 |
+
ignore_mismatched_shapes = kwargs.pop("ignore_mismatched_sizes", False)
|
318 |
+
num_labels = kwargs.pop("num_labels", None)
|
319 |
+
rotary_scaling_factor = kwargs.pop("rotary_scaling_factor", None)
|
320 |
+
strict = kwargs.pop("strict", True)
|
321 |
+
if rotary_scaling_factor:
|
322 |
+
config.rotary_scaling_factor = rotary_scaling_factor
|
323 |
+
|
324 |
+
if config.n_positions <= 0 and config.rotary_emb_fraction > 0:
|
325 |
+
config.n_positions = 2048
|
326 |
+
if num_labels:
|
327 |
+
config.num_labels = num_labels
|
328 |
+
|
329 |
+
if "add_pooling_layer" in kwargs:
|
330 |
+
model = cls(config, *inputs, add_pooling_layer=kwargs.pop("add_pooling_layer"))
|
331 |
+
else:
|
332 |
+
if cls == NomicBertModel:
|
333 |
+
model = cls(config, *inputs, add_pooling_layer=False)
|
334 |
+
else:
|
335 |
+
model = cls(config, *inputs)
|
336 |
+
# TODO: fix this
|
337 |
+
# Assuming we know what we're doing when loading from disk
|
338 |
+
# Prob a bad assumption but i'm tired and want to train this asap
|
339 |
+
if os.path.exists(model_name):
|
340 |
+
model_path = f"{model_name}/pytorch_model.bin"
|
341 |
+
if os.path.exists(model_path):
|
342 |
+
state_dict = torch.load(f"{model_name}/pytorch_model.bin")
|
343 |
+
else:
|
344 |
+
model_path = f"{model_name}/model.safetensors"
|
345 |
+
if not os.path.exists(model_path):
|
346 |
+
raise ValueError(f"Model path {model_path} not found")
|
347 |
+
state_dict = safe_load_file(model_path)
|
348 |
+
|
349 |
+
if ignore_mismatched_shapes:
|
350 |
+
state_dict = filter_shapes(state_dict, model)
|
351 |
+
load_return = model.load_state_dict(state_dict, strict=False)
|
352 |
+
else:
|
353 |
+
# TODO: can probably check config class and see if we need to remap from a bert model
|
354 |
+
state_dict = state_dict_from_pretrained(model_name)
|
355 |
+
state_dict = remap_bert_state_dict(
|
356 |
+
state_dict,
|
357 |
+
config,
|
358 |
+
remove_bert=remove_bert_prefix,
|
359 |
+
remove_cls_weights=remove_cls,
|
360 |
+
add_pooling_layer=getattr(config, "add_pooling_layer", False),
|
361 |
+
)
|
362 |
+
if ignore_mismatched_shapes:
|
363 |
+
state_dict = filter_shapes(state_dict, model)
|
364 |
+
|
365 |
+
load_return = model.load_state_dict(state_dict, strict=strict)
|
366 |
+
logger.warning(load_return)
|
367 |
+
return model
|
368 |
+
|
369 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
370 |
+
if isinstance(module, NomicBertEncoder):
|
371 |
+
module.gradient_checkpointing = value
|
372 |
+
|
373 |
+
|
374 |
+
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
375 |
+
def _init_weights(module, initializer_range=0.02):
|
376 |
+
if isinstance(module, nn.Linear):
|
377 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
378 |
+
if module.bias is not None:
|
379 |
+
nn.init.zeros_(module.bias)
|
380 |
+
elif isinstance(module, nn.Embedding):
|
381 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
382 |
+
if module.padding_idx is not None:
|
383 |
+
nn.init.zeros_(module.weight[module.padding_idx])
|
384 |
+
|
385 |
+
|
386 |
+
class NomicBertEmbeddings(nn.Module):
|
387 |
+
def __init__(self, config):
|
388 |
+
"""
|
389 |
+
If max_position_embeddings <= 0, there's no position embeddings
|
390 |
+
If type_vocab_size <= 0, there's no token type embeddings
|
391 |
+
"""
|
392 |
+
super().__init__()
|
393 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
|
394 |
+
self.max_position_embeddings = config.max_position_embeddings if config.rotary_emb_fraction <= 0 else 0
|
395 |
+
self.type_vocab_size = config.type_vocab_size
|
396 |
+
if self.max_position_embeddings > 0 and config.rotary_emb_fraction <= 0:
|
397 |
+
self.position_embeddings = nn.Embedding(
|
398 |
+
config.max_position_embeddings,
|
399 |
+
config.hidden_size,
|
400 |
+
)
|
401 |
+
if self.type_vocab_size > 0:
|
402 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
403 |
+
|
404 |
+
def forward(self, input_ids, position_ids=None, token_type_ids=None):
|
405 |
+
"""
|
406 |
+
input_ids: (batch, seqlen)
|
407 |
+
position_ids: (batch, seqlen)
|
408 |
+
token_type_ids: (batch, seqlen)
|
409 |
+
"""
|
410 |
+
batch_size, seqlen = input_ids.shape
|
411 |
+
embeddings = self.word_embeddings(input_ids)
|
412 |
+
|
413 |
+
if self.type_vocab_size > 0:
|
414 |
+
if token_type_ids is None:
|
415 |
+
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
|
416 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
417 |
+
embeddings = embeddings + token_type_embeddings
|
418 |
+
|
419 |
+
if self.max_position_embeddings > 0:
|
420 |
+
if position_ids is None:
|
421 |
+
position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
|
422 |
+
position_embeddings = self.position_embeddings(position_ids)
|
423 |
+
embeddings = embeddings + position_embeddings
|
424 |
+
return embeddings
|
425 |
+
|
426 |
+
|
427 |
+
class NomicBertMLP(nn.Module):
|
428 |
+
def __init__(
|
429 |
+
self,
|
430 |
+
in_features,
|
431 |
+
hidden_features=None,
|
432 |
+
out_features=None,
|
433 |
+
activation=F.gelu,
|
434 |
+
bias1=True,
|
435 |
+
bias2=True,
|
436 |
+
return_residual=False,
|
437 |
+
fused_bias_fc=False,
|
438 |
+
):
|
439 |
+
super().__init__()
|
440 |
+
out_features = out_features if out_features is not None else in_features
|
441 |
+
hidden_features = hidden_features if hidden_features is not None else in_features * 4
|
442 |
+
self.return_residual = return_residual
|
443 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1)
|
444 |
+
approximate = "tanh" if activation in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
|
445 |
+
self.activation = nn.GELU(approximate=approximate) if activation == "gelu" else activation
|
446 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
|
447 |
+
|
448 |
+
def forward(self, x):
|
449 |
+
y = self.fc1(x)
|
450 |
+
y = self.activation(y)
|
451 |
+
y = self.fc2(y)
|
452 |
+
return y if not self.return_residual else (y, x)
|
453 |
+
|
454 |
+
|
455 |
+
class NomciBertGatedMLP(nn.Module):
|
456 |
+
def __init__(
|
457 |
+
self,
|
458 |
+
in_features,
|
459 |
+
hidden_features=None,
|
460 |
+
out_features=None,
|
461 |
+
activation=F.sigmoid,
|
462 |
+
bias1=True,
|
463 |
+
bias2=True,
|
464 |
+
multiple_of=256,
|
465 |
+
return_residual=False,
|
466 |
+
fused_bias_fc=True,
|
467 |
+
device=None,
|
468 |
+
dtype=None,
|
469 |
+
):
|
470 |
+
super().__init__()
|
471 |
+
out_features = out_features if out_features is not None else in_features
|
472 |
+
hidden_features = hidden_features if hidden_features is not None else int(8 * in_features / 3)
|
473 |
+
hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of
|
474 |
+
self.return_residual = return_residual
|
475 |
+
|
476 |
+
self.fc11 = nn.Linear(in_features, hidden_features, bias=bias1)
|
477 |
+
self.fc12 = nn.Linear(in_features, hidden_features, bias=bias1)
|
478 |
+
self.activation = activation
|
479 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2)
|
480 |
+
|
481 |
+
def forward(self, x):
|
482 |
+
y = self.fc11(x)
|
483 |
+
gate = self.fc12(x)
|
484 |
+
if self.activation == F.sigmoid: # Special case for GLU
|
485 |
+
y = F.glu(torch.cat([y, gate], dim=-1), dim=-1)
|
486 |
+
else:
|
487 |
+
y = y * self.activation(gate)
|
488 |
+
y = self.fc2(y)
|
489 |
+
return y if not self.return_residual else (y, x)
|
490 |
+
|
491 |
+
|
492 |
+
def rotate_half(x, interleaved=False):
|
493 |
+
if not interleaved:
|
494 |
+
x1, x2 = x.chunk(2, dim=-1)
|
495 |
+
return torch.cat((-x2, x1), dim=-1)
|
496 |
+
else:
|
497 |
+
x1, x2 = x[..., ::2], x[..., 1::2]
|
498 |
+
return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)
|
499 |
+
|
500 |
+
|
501 |
+
def apply_rotary_emb(x, cos, sin, offset=0, interleaved=False):
|
502 |
+
"""
|
503 |
+
x: (batch_size, seqlen, nheads, headdim)
|
504 |
+
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
|
505 |
+
"""
|
506 |
+
ro_dim = cos.shape[-1] * 2
|
507 |
+
assert ro_dim <= x.shape[-1]
|
508 |
+
cos, sin = (
|
509 |
+
cos[offset : offset + x.shape[1]],
|
510 |
+
sin[offset : offset + x.shape[1]],
|
511 |
+
)
|
512 |
+
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
513 |
+
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
514 |
+
return torch.cat(
|
515 |
+
[x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
|
516 |
+
dim=-1,
|
517 |
+
)
|
518 |
+
|
519 |
+
|
520 |
+
class NomicBertRotaryEmbedding(nn.Module):
|
521 |
+
def __init__(
|
522 |
+
self,
|
523 |
+
dim: int,
|
524 |
+
base=10000.0,
|
525 |
+
interleaved=False,
|
526 |
+
scale_base=None,
|
527 |
+
pos_idx_in_fp32=True,
|
528 |
+
device=None,
|
529 |
+
):
|
530 |
+
"""
|
531 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
532 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
533 |
+
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
534 |
+
otherwise they might be in lower precision.
|
535 |
+
This option was added because previously (before 2023-07-02), when we construct
|
536 |
+
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
537 |
+
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
538 |
+
self.inv_freq would be bf16, and the position indices are also in bf16.
|
539 |
+
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
540 |
+
embeddings for some positions will coincide.
|
541 |
+
To maintain compatibility with models previously trained in pure bf16,
|
542 |
+
we add this option.
|
543 |
+
"""
|
544 |
+
super().__init__()
|
545 |
+
self.dim = dim
|
546 |
+
self.base = float(base)
|
547 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
548 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
549 |
+
inv_freq = self._compute_inv_freq(device)
|
550 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
551 |
+
self.interleaved = interleaved
|
552 |
+
self.scale_base = scale_base
|
553 |
+
scale = (
|
554 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
555 |
+
if scale_base is not None
|
556 |
+
else None
|
557 |
+
)
|
558 |
+
self.register_buffer("scale", scale, persistent=False)
|
559 |
+
|
560 |
+
self._seq_len_cached = 0
|
561 |
+
self._cos_cached = None
|
562 |
+
self._sin_cached = None
|
563 |
+
self._cos_k_cached = None
|
564 |
+
self._sin_k_cached = None
|
565 |
+
|
566 |
+
def _compute_inv_freq(self, device=None):
|
567 |
+
return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
568 |
+
|
569 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
570 |
+
# Reset the tables if the sequence length has changed,
|
571 |
+
# if we're on a new device (possibly due to tracing for instance),
|
572 |
+
# or if we're switching from inference mode to training
|
573 |
+
if (
|
574 |
+
seqlen > self._seq_len_cached
|
575 |
+
or self._cos_cached is None
|
576 |
+
or self._cos_cached.device != device
|
577 |
+
or self._cos_cached.dtype != dtype
|
578 |
+
or (self.training and self._cos_cached.is_inference())
|
579 |
+
):
|
580 |
+
self._seq_len_cached = seqlen
|
581 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
582 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
583 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
584 |
+
if self.pos_idx_in_fp32:
|
585 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
586 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
587 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
588 |
+
# cos & sin output to change significantly.
|
589 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
590 |
+
if self.inv_freq.dtype != torch.float32:
|
591 |
+
inv_freq = self._compute_inv_freq(device=device)
|
592 |
+
else:
|
593 |
+
inv_freq = self.inv_freq
|
594 |
+
else:
|
595 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
596 |
+
inv_freq = self.inv_freq
|
597 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
598 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
599 |
+
freqs = torch.outer(t, inv_freq)
|
600 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
601 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
602 |
+
|
603 |
+
def forward(
|
604 |
+
self,
|
605 |
+
qkv: torch.Tensor,
|
606 |
+
kv: Optional[torch.Tensor] = None,
|
607 |
+
seqlen_offset: Union[int, torch.Tensor] = 0,
|
608 |
+
max_seqlen: Optional[int] = None,
|
609 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
610 |
+
"""
|
611 |
+
qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
|
612 |
+
else it's just q of shape (batch, seqlen, nheads, headdim)
|
613 |
+
kv: (batch, seqlen, 2, nheads, headdim)
|
614 |
+
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
615 |
+
Most commonly used in inference when we have KV cache.
|
616 |
+
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
617 |
+
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
618 |
+
Apply rotary embedding *inplace* to qkv and / or kv.
|
619 |
+
"""
|
620 |
+
seqlen = qkv.shape[1]
|
621 |
+
if seqlen > self._seq_len_cached:
|
622 |
+
self._update_cos_sin_cache(seqlen, device=qkv.device, dtype=qkv.dtype)
|
623 |
+
elif max_seqlen is not None:
|
624 |
+
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
625 |
+
elif isinstance(seqlen_offset, int):
|
626 |
+
self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
627 |
+
|
628 |
+
q_rot = apply_rotary_emb(qkv[:, :, 0], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
|
629 |
+
k_rot = apply_rotary_emb(qkv[:, :, 1], self._cos_cached, self._sin_cached, seqlen_offset, self.interleaved)
|
630 |
+
return torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
|
631 |
+
|
632 |
+
|
633 |
+
class NomicBertDynamicNTKRotaryEmbedding(NomicBertRotaryEmbedding):
|
634 |
+
def __init__(self, rotary_scaling_factor, max_position_embeddings, **kwargs):
|
635 |
+
super().__init__(**kwargs)
|
636 |
+
self.rotary_scaling_factor = rotary_scaling_factor
|
637 |
+
self.max_position_embeddings = max_position_embeddings
|
638 |
+
|
639 |
+
def _compute_inv_freq(self, base=None, device=None):
|
640 |
+
if base is None:
|
641 |
+
base = self.base
|
642 |
+
return 1.0 / (base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
|
643 |
+
|
644 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
645 |
+
# Reset the tables if the sequence length has changed,
|
646 |
+
# if we're on a new device (possibly due to tracing for instance),
|
647 |
+
# or if we're switching from inference mode to training
|
648 |
+
if seqlen > self.max_position_embeddings:
|
649 |
+
base = self.base * (
|
650 |
+
(self.rotary_scaling_factor * seqlen / self.max_position_embeddings) - (self.rotary_scaling_factor - 1)
|
651 |
+
) ** (self.dim / (self.dim - 2))
|
652 |
+
inv_freq = self._compute_inv_freq(base=base, device=device)
|
653 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
654 |
+
|
655 |
+
if (
|
656 |
+
seqlen > self._seq_len_cached
|
657 |
+
or self._cos_cached is None
|
658 |
+
or self._cos_cached.device != device
|
659 |
+
or self._cos_cached.dtype != dtype
|
660 |
+
or (self.training and self._cos_cached.is_inference())
|
661 |
+
):
|
662 |
+
self._seq_len_cached = seqlen
|
663 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
664 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
665 |
+
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
666 |
+
if self.pos_idx_in_fp32:
|
667 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
668 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
669 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
670 |
+
# cos & sin output to change significantly.
|
671 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
672 |
+
if self.inv_freq.dtype != torch.float32:
|
673 |
+
if seqlen > self.max_position_embeddings:
|
674 |
+
base = self.base * (
|
675 |
+
(self.scaling_factor * seqlen / self.max_position_embeddings) - (self.scaling_factor - 1)
|
676 |
+
) ** (self.dim / (self.dim - 2))
|
677 |
+
else:
|
678 |
+
base = self.base
|
679 |
+
inv_freq = self._compute_inv_freq(device=device, base=base)
|
680 |
+
else:
|
681 |
+
inv_freq = self.inv_freq
|
682 |
+
else:
|
683 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
684 |
+
inv_freq = self.inv_freq
|
685 |
+
# Don't do einsum, it converts fp32 to fp16 under AMP
|
686 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
687 |
+
freqs = torch.outer(t, inv_freq)
|
688 |
+
if self.scale is None:
|
689 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
690 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
691 |
+
else:
|
692 |
+
power = (
|
693 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
694 |
+
) / self.scale_base
|
695 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
696 |
+
# We want the multiplication by scale to happen in fp32
|
697 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
698 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
699 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
700 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
701 |
+
|
702 |
+
|
703 |
+
class NomicBertAttention(nn.Module):
|
704 |
+
"""Multi-head self-attention and cross-attention"""
|
705 |
+
|
706 |
+
def __init__(
|
707 |
+
self,
|
708 |
+
config,
|
709 |
+
) -> None:
|
710 |
+
"""
|
711 |
+
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
|
712 |
+
return_residual: whether to return the input x along with the output. This is for
|
713 |
+
performance reason: for post-norm architecture, returning the input allows us
|
714 |
+
to fuse the backward of nn.Linear with the residual connection.
|
715 |
+
"""
|
716 |
+
super().__init__()
|
717 |
+
self.embed_dim = config.n_embd
|
718 |
+
self.use_flash_attn = config.use_flash_attn
|
719 |
+
self.fused_bias_fc = config.fused_bias_fc
|
720 |
+
|
721 |
+
self.num_heads = config.n_head
|
722 |
+
self.num_heads_kv = config.num_heads_kv if getattr(config, "num_heads_kv", None) is not None else self.num_heads
|
723 |
+
assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"
|
724 |
+
self.head_dim = self.embed_dim // self.num_heads
|
725 |
+
# we don't really support mqa / gqa for now
|
726 |
+
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
|
727 |
+
|
728 |
+
self.register_buffer(
|
729 |
+
"norm_factor",
|
730 |
+
torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype()),
|
731 |
+
persistent=False,
|
732 |
+
)
|
733 |
+
|
734 |
+
self.rotary_emb_dim = self.head_dim * config.rotary_emb_fraction
|
735 |
+
if self.rotary_emb_dim > 0:
|
736 |
+
if getattr(config, "rotary_scaling_factor", None):
|
737 |
+
self.rotary_emb = NomicBertDynamicNTKRotaryEmbedding(
|
738 |
+
dim=self.rotary_emb_dim,
|
739 |
+
base=config.rotary_emb_base,
|
740 |
+
scale_base=config.rotary_emb_scale_base,
|
741 |
+
interleaved=config.rotary_emb_interleaved,
|
742 |
+
rotary_scaling_factor=config.rotary_scaling_factor,
|
743 |
+
max_position_embeddings=config.max_trained_positions,
|
744 |
+
)
|
745 |
+
else:
|
746 |
+
self.rotary_emb = NomicBertRotaryEmbedding(
|
747 |
+
dim=self.rotary_emb_dim,
|
748 |
+
base=config.rotary_emb_base,
|
749 |
+
scale_base=config.rotary_emb_scale_base,
|
750 |
+
interleaved=config.rotary_emb_interleaved,
|
751 |
+
)
|
752 |
+
# bug in xformers: https://github.com/facebookresearch/xformers/issues/841
|
753 |
+
# uses the head dimension instead of the sequence dimension
|
754 |
+
self.rotary_head_dim = getattr(config, "rotary_head_dim", False)
|
755 |
+
|
756 |
+
self.Wqkv = nn.Linear(self.embed_dim, qkv_dim, bias=config.qkv_proj_bias)
|
757 |
+
|
758 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_proj_bias)
|
759 |
+
self.causal = config.causal
|
760 |
+
self.drop = nn.Dropout(config.attn_pdrop)
|
761 |
+
|
762 |
+
def forward(
|
763 |
+
self,
|
764 |
+
hidden_states: torch.Tensor,
|
765 |
+
attention_mask: Optional[torch.Tensor] = None,
|
766 |
+
position_ids: Optional[torch.LongTensor] = None,
|
767 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
768 |
+
output_attentions: bool = False,
|
769 |
+
use_cache: bool = False,
|
770 |
+
is_padded_inputs: Optional[bool] = True,
|
771 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
772 |
+
max_seq_len: Optional[int] = None,
|
773 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
774 |
+
|
775 |
+
has_layer_past = past_key_value is not None
|
776 |
+
|
777 |
+
if has_layer_past:
|
778 |
+
past_key_value = past_key_value[0]
|
779 |
+
past_len = past_key_value[1]
|
780 |
+
else:
|
781 |
+
past_len = 0
|
782 |
+
|
783 |
+
qkv = self.Wqkv(hidden_states)
|
784 |
+
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
785 |
+
|
786 |
+
past_key_value = (past_key_value, past_len + qkv.size(1)) if use_cache else None
|
787 |
+
|
788 |
+
if self.rotary_emb_dim > 0:
|
789 |
+
if self.rotary_head_dim:
|
790 |
+
qkv = rearrange(qkv, "b s three h d -> b h three s d")
|
791 |
+
qkv = self.rotary_emb(qkv, seqlen_offset=past_len)
|
792 |
+
|
793 |
+
if self.rotary_head_dim:
|
794 |
+
qkv = rearrange(qkv, "b h three s d -> b s three h d")
|
795 |
+
|
796 |
+
query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]
|
797 |
+
|
798 |
+
query = query.permute(0, 2, 1, 3)
|
799 |
+
key = key.permute(0, 2, 1, 3)
|
800 |
+
value = value.permute(0, 2, 1, 3)
|
801 |
+
|
802 |
+
attention_scores = torch.matmul(query, key.transpose(-1, -2)) / self.norm_factor
|
803 |
+
if attention_mask is not None:
|
804 |
+
attention_scores = attention_scores + attention_mask
|
805 |
+
|
806 |
+
attentions_probs = F.softmax(attention_scores, dim=-1)
|
807 |
+
attentions_probs = self.drop(attentions_probs)
|
808 |
+
|
809 |
+
attn_output = torch.matmul(attentions_probs, value)
|
810 |
+
attn_output = rearrange(attn_output.permute(0, 2, 1, 3), "... h d -> ... (h d)")
|
811 |
+
|
812 |
+
attn_output = self.out_proj(attn_output)
|
813 |
+
|
814 |
+
return attn_output
|
815 |
+
|
816 |
+
|
817 |
+
class NomicBertBlock(NomicBertPreTrainedModel):
|
818 |
+
def __init__(
|
819 |
+
self,
|
820 |
+
config,
|
821 |
+
):
|
822 |
+
super().__init__(config=config)
|
823 |
+
self.prenorm = config.prenorm
|
824 |
+
self.fused_dropout_add_ln = config.fused_dropout_add_ln
|
825 |
+
|
826 |
+
self.attn = NomicBertAttention(config)
|
827 |
+
activation = (
|
828 |
+
F.sigmoid
|
829 |
+
if config.activation_function == "glu"
|
830 |
+
else (F.silu if config.activation_function == "swiglu" else F.gelu)
|
831 |
+
)
|
832 |
+
if config.activation_function in ["glu", "swiglu", "geglu"]:
|
833 |
+
self.mlp = NomciBertGatedMLP(
|
834 |
+
config.n_embd,
|
835 |
+
hidden_features=config.n_inner,
|
836 |
+
bias1=config.mlp_fc1_bias,
|
837 |
+
bias2=config.mlp_fc2_bias,
|
838 |
+
activation=activation,
|
839 |
+
fused_bias_fc=config.fused_bias_fc,
|
840 |
+
)
|
841 |
+
else:
|
842 |
+
self.mlp = NomicBertMLP(
|
843 |
+
config.n_embd,
|
844 |
+
hidden_features=config.n_inner,
|
845 |
+
bias1=config.mlp_fc1_bias,
|
846 |
+
bias2=config.mlp_fc2_bias,
|
847 |
+
activation=activation,
|
848 |
+
fused_bias_fc=config.fused_bias_fc,
|
849 |
+
)
|
850 |
+
|
851 |
+
self.dropout1 = nn.Dropout(config.resid_pdrop)
|
852 |
+
self.norm1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
853 |
+
self.norm2 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
854 |
+
self.dropout2 = nn.Dropout(config.resid_pdrop)
|
855 |
+
|
856 |
+
def forward(
|
857 |
+
self,
|
858 |
+
hidden_states: torch.Tensor,
|
859 |
+
hidden_states2: torch.Tensor,
|
860 |
+
residual: Optional[torch.Tensor] = None,
|
861 |
+
attention_mask: Optional[torch.Tensor] = None,
|
862 |
+
position_ids: Optional[torch.LongTensor] = None,
|
863 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
864 |
+
is_padded_inputs: Optional[bool] = True,
|
865 |
+
output_attentions: Optional[bool] = False,
|
866 |
+
use_cache: Optional[bool] = False,
|
867 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
868 |
+
max_seq_len: Optional[int] = None,
|
869 |
+
):
|
870 |
+
r"""Pass the input through the encoder layer.
|
871 |
+
|
872 |
+
Args:
|
873 |
+
hidden_states: the sequence to the encoder layer (required).
|
874 |
+
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
|
875 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
876 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
877 |
+
about the CLS token in the last layer.
|
878 |
+
"""
|
879 |
+
if self.prenorm:
|
880 |
+
dropped = self.dropout1(hidden_states)
|
881 |
+
residual = (dropped + residual) if residual is not None else dropped
|
882 |
+
hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
|
883 |
+
hidden_states = self.attn(
|
884 |
+
hidden_states,
|
885 |
+
attention_mask=attention_mask,
|
886 |
+
is_padded_inputs=is_padded_inputs,
|
887 |
+
cu_seqlens=cu_seqlens,
|
888 |
+
max_seq_len=max_seq_len,
|
889 |
+
)
|
890 |
+
|
891 |
+
dropped = self.dropout2(hidden_states)
|
892 |
+
residual = (dropped + residual) if residual is not None else dropped
|
893 |
+
hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
|
894 |
+
hidden_states = self.mlp(hidden_states)
|
895 |
+
|
896 |
+
return hidden_states, None, residual
|
897 |
+
else:
|
898 |
+
assert residual is None
|
899 |
+
attn_outputs = self.attn(
|
900 |
+
hidden_states,
|
901 |
+
attention_mask=attention_mask,
|
902 |
+
is_padded_inputs=is_padded_inputs,
|
903 |
+
cu_seqlens=cu_seqlens,
|
904 |
+
max_seq_len=max_seq_len,
|
905 |
+
)
|
906 |
+
hidden_states = self.norm1((self.dropout1(attn_outputs) + hidden_states).to(dtype=self.norm1.weight.dtype))
|
907 |
+
mlp_out = self.mlp(hidden_states)
|
908 |
+
|
909 |
+
hidden_states = self.norm2((self.dropout2(mlp_out) + hidden_states).to(dtype=self.norm2.weight.dtype))
|
910 |
+
return hidden_states, None, None
|
911 |
+
|
912 |
+
|
913 |
+
class NomicBertEncoder(nn.Module):
|
914 |
+
def __init__(self, config: GPT2Config):
|
915 |
+
super().__init__()
|
916 |
+
self.layers = nn.ModuleList([NomicBertBlock(config) for _ in range(config.n_layer)])
|
917 |
+
self.gradient_checkpointing = False
|
918 |
+
self.config = config
|
919 |
+
|
920 |
+
def forward(
|
921 |
+
self,
|
922 |
+
hidden_states: torch.LongTensor = None,
|
923 |
+
attention_mask: Optional[torch.Tensor] = None,
|
924 |
+
position_ids: Optional[torch.LongTensor] = None,
|
925 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
926 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
927 |
+
use_cache: Optional[bool] = None,
|
928 |
+
output_attentions: Optional[bool] = None,
|
929 |
+
output_hidden_states: Optional[bool] = None,
|
930 |
+
return_dict: Optional[bool] = None,
|
931 |
+
is_padded_inputs: Optional[bool] = True,
|
932 |
+
):
|
933 |
+
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
934 |
+
This means that we only compute the last layer output for these tokens.
|
935 |
+
subset_mask: (batch, seqlen), dtype=torch.bool
|
936 |
+
"""
|
937 |
+
hidden_states2 = None
|
938 |
+
residual = None
|
939 |
+
|
940 |
+
for _, layer in enumerate(self.layers):
|
941 |
+
if self.gradient_checkpointing and self.training:
|
942 |
+
|
943 |
+
def create_custom_forward(module):
|
944 |
+
def custom_forward(*inputs):
|
945 |
+
# None for past_key_value
|
946 |
+
return module(*inputs)
|
947 |
+
|
948 |
+
return custom_forward
|
949 |
+
|
950 |
+
hidden_states, hidden_states2, residual = torch.utils.checkpoint.checkpoint(
|
951 |
+
create_custom_forward(layer),
|
952 |
+
hidden_states,
|
953 |
+
hidden_states2,
|
954 |
+
residual,
|
955 |
+
attention_mask,
|
956 |
+
None,
|
957 |
+
None,
|
958 |
+
is_padded_inputs,
|
959 |
+
# if you freeze ANY layers, you need `use_reentrant=False`
|
960 |
+
# https://github.com/huggingface/transformers/issues/21381
|
961 |
+
# https://discuss.pytorch.org/t/checkpoint-with-no-grad-requiring-inputs-problem/19117/7
|
962 |
+
use_reentrant=False,
|
963 |
+
)
|
964 |
+
|
965 |
+
else:
|
966 |
+
hidden_states, hidden_states2, residual = layer(
|
967 |
+
hidden_states,
|
968 |
+
hidden_states2,
|
969 |
+
residual,
|
970 |
+
attention_mask,
|
971 |
+
position_ids,
|
972 |
+
None,
|
973 |
+
is_padded_inputs,
|
974 |
+
output_attentions,
|
975 |
+
use_cache,
|
976 |
+
)
|
977 |
+
return hidden_states
|
978 |
+
|
979 |
+
|
980 |
+
class NomicBertPooler(nn.Module):
|
981 |
+
def __init__(self, config):
|
982 |
+
super().__init__()
|
983 |
+
self.dense = nn.Linear(config.n_embd, config.n_embd)
|
984 |
+
self.activation = nn.Tanh()
|
985 |
+
|
986 |
+
def forward(self, hidden_states, pool=True):
|
987 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
988 |
+
# to the first token.
|
989 |
+
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
990 |
+
pooled_output = self.dense(first_token_tensor)
|
991 |
+
pooled_output = self.activation(pooled_output)
|
992 |
+
return pooled_output
|
993 |
+
|
994 |
+
|
995 |
+
class NomicBertPredictionHeadTransform(nn.Module):
|
996 |
+
def __init__(self, config):
|
997 |
+
super().__init__()
|
998 |
+
self.dense = nn.Linear(config.n_embd, config.n_embd, bias=config.mlp_fc1_bias)
|
999 |
+
approximate = "tanh" if config.activation_function in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] else "none"
|
1000 |
+
if config.activation_function == "swiglu":
|
1001 |
+
self.transform_act_fn = F.silu
|
1002 |
+
else:
|
1003 |
+
self.transform_act_fn = nn.GELU(approximate=approximate)
|
1004 |
+
|
1005 |
+
self.layer_norm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1006 |
+
|
1007 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
1008 |
+
hidden_states = self.dense(hidden_states)
|
1009 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
1010 |
+
hidden_states = self.layer_norm(hidden_states)
|
1011 |
+
|
1012 |
+
return hidden_states
|
1013 |
+
|
1014 |
+
|
1015 |
+
class NomicBertLMPredictionHead(nn.Module):
|
1016 |
+
def __init__(self, config):
|
1017 |
+
super().__init__()
|
1018 |
+
|
1019 |
+
self.transform = NomicBertPredictionHeadTransform(config)
|
1020 |
+
|
1021 |
+
self.decoder = nn.Linear(config.n_embd, config.vocab_size, bias=config.mlp_fc1_bias)
|
1022 |
+
|
1023 |
+
def forward(self, hidden_states):
|
1024 |
+
hidden_states = self.transform(hidden_states)
|
1025 |
+
hidden_states = self.decoder(hidden_states)
|
1026 |
+
return hidden_states
|
1027 |
+
|
1028 |
+
|
1029 |
+
class NomicBertPreTrainingHeads(nn.Module):
|
1030 |
+
def __init__(self, config):
|
1031 |
+
super().__init__()
|
1032 |
+
self.predictions = NomicBertLMPredictionHead(config)
|
1033 |
+
|
1034 |
+
def forward(self, sequence_output):
|
1035 |
+
prediction_scores = self.predictions(sequence_output)
|
1036 |
+
return prediction_scores
|
1037 |
+
|
1038 |
+
|
1039 |
+
class NomicBertModel(NomicBertPreTrainedModel):
|
1040 |
+
def __init__(self, config: GPT2Config, add_pooling_layer=True):
|
1041 |
+
super().__init__(config)
|
1042 |
+
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
1043 |
+
if config.vocab_size % self.pad_vocab_size_multiple != 0:
|
1044 |
+
config.vocab_size += self.pad_vocab_size_multiple - (config.vocab_size % self.pad_vocab_size_multiple)
|
1045 |
+
|
1046 |
+
assert config.activation_function in [
|
1047 |
+
"gelu",
|
1048 |
+
"gelu_new",
|
1049 |
+
"gelu_fast",
|
1050 |
+
"gelu_pytorch_tanh",
|
1051 |
+
"swiglu",
|
1052 |
+
"geglu",
|
1053 |
+
"glu",
|
1054 |
+
]
|
1055 |
+
|
1056 |
+
self.embeddings = NomicBertEmbeddings(config)
|
1057 |
+
self.emb_drop = nn.Dropout(config.resid_pdrop)
|
1058 |
+
self.emb_ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
1059 |
+
self.encoder = NomicBertEncoder(config)
|
1060 |
+
self.pooler = NomicBertPooler(config) if add_pooling_layer else None
|
1061 |
+
|
1062 |
+
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
1063 |
+
|
1064 |
+
def forward(
|
1065 |
+
self,
|
1066 |
+
input_ids,
|
1067 |
+
attention_mask=None,
|
1068 |
+
position_ids=None,
|
1069 |
+
token_type_ids=None,
|
1070 |
+
return_dict=None,
|
1071 |
+
matryoshka_dim=None,
|
1072 |
+
):
|
1073 |
+
if token_type_ids is None:
|
1074 |
+
token_type_ids = torch.zeros_like(input_ids)
|
1075 |
+
hidden_states = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
|
1076 |
+
hidden_states = self.emb_ln(hidden_states)
|
1077 |
+
hidden_states = self.emb_drop(hidden_states)
|
1078 |
+
|
1079 |
+
attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.shape)
|
1080 |
+
sequence_output = self.encoder(hidden_states, attention_mask=attention_mask, return_dict=return_dict)
|
1081 |
+
|
1082 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1083 |
+
|
1084 |
+
if matryoshka_dim:
|
1085 |
+
sequence_output = sequence_output[:, :matryoshka_dim]
|
1086 |
+
|
1087 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1088 |
+
last_hidden_state=sequence_output,
|
1089 |
+
pooler_output=pooled_output,
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
|
1093 |
+
class NomicBertForPreTraining(NomicBertPreTrainedModel):
|
1094 |
+
_tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
1095 |
+
|
1096 |
+
def __init__(self, config: GPT2Config):
|
1097 |
+
super().__init__(config)
|
1098 |
+
|
1099 |
+
self.bert = NomicBertModel(config, add_pooling_layer=getattr(config, "add_pooling_layer", False))
|
1100 |
+
self.cls = NomicBertPreTrainingHeads(config)
|
1101 |
+
self.mlm_loss = nn.CrossEntropyLoss()
|
1102 |
+
|
1103 |
+
# Initialize weights and apply final processing
|
1104 |
+
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
1105 |
+
self.tie_weights()
|
1106 |
+
|
1107 |
+
def tie_weights(self):
|
1108 |
+
self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
|
1109 |
+
|
1110 |
+
def forward(
|
1111 |
+
self,
|
1112 |
+
input_ids,
|
1113 |
+
position_ids=None,
|
1114 |
+
token_type_ids=None,
|
1115 |
+
attention_mask=None,
|
1116 |
+
labels=None,
|
1117 |
+
):
|
1118 |
+
"""
|
1119 |
+
If labels are provided, they must be -100 for masked out tokens (as specified in the attention
|
1120 |
+
mask).
|
1121 |
+
Outputs:
|
1122 |
+
if `labels` and `next_sentence_label` are not `None`:
|
1123 |
+
Outputs the total_loss which is the sum of the masked language modeling loss and the next
|
1124 |
+
sentence classification loss.
|
1125 |
+
if `labels` or `next_sentence_label` is `None`:
|
1126 |
+
Outputs a tuple comprising
|
1127 |
+
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
|
1128 |
+
- the next sentence classification logits of shape [batch_size, 2].
|
1129 |
+
|
1130 |
+
"""
|
1131 |
+
outputs = self.bert(
|
1132 |
+
input_ids,
|
1133 |
+
position_ids=position_ids,
|
1134 |
+
token_type_ids=token_type_ids,
|
1135 |
+
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
1136 |
+
)
|
1137 |
+
sequence_output, _ = outputs.last_hidden_state, outputs.pooler_output
|
1138 |
+
|
1139 |
+
prediction_scores = self.cls(sequence_output)
|
1140 |
+
|
1141 |
+
total_loss = None
|
1142 |
+
if labels is not None:
|
1143 |
+
masked_lm_loss = self.mlm_loss(
|
1144 |
+
rearrange(prediction_scores, "... v -> (...) v"),
|
1145 |
+
rearrange(labels, "... -> (...)"),
|
1146 |
+
)
|
1147 |
+
total_loss = masked_lm_loss.float()
|
1148 |
+
|
1149 |
+
return MaskedLMOutput(
|
1150 |
+
loss=total_loss,
|
1151 |
+
logits=prediction_scores,
|
1152 |
+
hidden_states=outputs.hidden_states,
|
1153 |
+
attentions=None,
|
1154 |
+
)
|
1155 |
+
|
1156 |
+
|
1157 |
+
class NomicBertForSequenceClassification(NomicBertPreTrainedModel):
|
1158 |
+
def __init__(self, config):
|
1159 |
+
super().__init__(config)
|
1160 |
+
self.num_labels = config.num_labels
|
1161 |
+
self.config = config
|
1162 |
+
|
1163 |
+
self.bert = NomicBertModel(config)
|
1164 |
+
classifier_dropout = getattr(config, "classifier_dropout", config.embd_pdrop)
|
1165 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1166 |
+
self.classifier = nn.Linear(config.n_embd, config.num_labels)
|
1167 |
+
|
1168 |
+
# Initialize weights and apply final processing
|
1169 |
+
self.post_init()
|
1170 |
+
|
1171 |
+
def forward(
|
1172 |
+
self,
|
1173 |
+
input_ids: Optional[torch.Tensor] = None,
|
1174 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1175 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1176 |
+
position_ids: Optional[torch.Tensor] = None,
|
1177 |
+
head_mask: Optional[torch.Tensor] = None,
|
1178 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1179 |
+
labels: Optional[torch.Tensor] = None,
|
1180 |
+
output_attentions: Optional[bool] = None,
|
1181 |
+
output_hidden_states: Optional[bool] = None,
|
1182 |
+
return_dict: Optional[bool] = None,
|
1183 |
+
):
|
1184 |
+
r"""
|
1185 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1186 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1187 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1188 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1189 |
+
"""
|
1190 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1191 |
+
outputs = self.bert(
|
1192 |
+
input_ids,
|
1193 |
+
position_ids=position_ids,
|
1194 |
+
token_type_ids=token_type_ids,
|
1195 |
+
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
pooled_output = outputs[1]
|
1199 |
+
|
1200 |
+
pooled_output = self.dropout(pooled_output)
|
1201 |
+
logits = self.classifier(pooled_output)
|
1202 |
+
|
1203 |
+
loss = None
|
1204 |
+
if labels is not None:
|
1205 |
+
if self.config.problem_type is None:
|
1206 |
+
if self.num_labels == 1:
|
1207 |
+
self.config.problem_type = "regression"
|
1208 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1209 |
+
self.config.problem_type = "single_label_classification"
|
1210 |
+
else:
|
1211 |
+
self.config.problem_type = "multi_label_classification"
|
1212 |
+
|
1213 |
+
if self.config.problem_type == "regression":
|
1214 |
+
loss_fct = nn.MSELoss()
|
1215 |
+
if self.num_labels == 1:
|
1216 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1217 |
+
else:
|
1218 |
+
loss = loss_fct(logits, labels)
|
1219 |
+
elif self.config.problem_type == "single_label_classification":
|
1220 |
+
loss_fct = nn.CrossEntropyLoss()
|
1221 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1222 |
+
elif self.config.problem_type == "multi_label_classification":
|
1223 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1224 |
+
loss = loss_fct(logits, labels)
|
1225 |
+
if not return_dict:
|
1226 |
+
output = (logits,) + outputs[2:]
|
1227 |
+
return ((loss,) + output) if loss is not None else output
|
1228 |
+
|
1229 |
+
return SequenceClassifierOutput(
|
1230 |
+
loss=loss,
|
1231 |
+
logits=logits,
|
1232 |
+
hidden_states=outputs.hidden_states,
|
1233 |
+
attentions=outputs.attentions,
|
1234 |
+
)
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 8192,
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"pad_to_multiple_of": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"pad_token_type_id": 0,
|
53 |
+
"padding_side": "right",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"stride": 0,
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "BertTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|