lumalik commited on
Commit
c796acb
·
1 Parent(s): 46ed3cd

added readme with example

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Vent-roBERTa-emotion
2
+
3
+ This is a roBERTa pretrained on twitter and then trained for self-labeled emotion classification on the Vent dataset (see https://arxiv.org/abs/1901.04856). <br/>
4
+ The Vent dataset contains 33 million posts annotated with one emotion by the user themselves. <br/>
5
+
6
+ The model was trained to recognize 5 emotions ("Affection", "Anger", "Fear", "Happiness", "Sadness") on 7 million posts from the dataset. <br/>
7
+
8
+ Example of how to use the classifier on single texts. <br/>
9
+
10
+ ````
11
+ from transformers import AutoModelForSequenceClassification
12
+ from transformers import AutoTokenizer
13
+ import numpy as np
14
+ from scipy.special import softmax
15
+ import torch
16
+
17
+ tokenizer = AutoTokenizer.from_pretrained("lumalik/vent-roberta-emotion")
18
+ model = AutoModelForSequenceClassification.from_pretrained("lumalik/vent-roberta-emotion")
19
+ model.eval()
20
+
21
+ texts = ["I love her sooo much", "I hate you!"]
22
+
23
+ for text in texts:
24
+ encoded_text = tokenizer.encode_plus(text,
25
+ add_special_tokens=True,
26
+ max_length=128,
27
+ return_token_type_ids=True,
28
+ padding="max_length",
29
+ truncation=True,
30
+ return_attention_mask=True)
31
+
32
+ output = model(input_ids=torch.tensor(encoded_text['input_ids'], dtype=torch.long).unsqueeze(0),
33
+ token_type_ids=torch.tensor(encoded_text['token_type_ids'], dtype=torch.long).unsqueeze(0),
34
+ attention_mask=torch.tensor(encoded_text['attention_mask'], dtype=torch.long).unsqueeze(0))
35
+
36
+ output = softmax(output[0].detach().numpy(), axis=1)
37
+
38
+ print("======================")
39
+ print(text)
40
+ print("Affection: {}".format(output[0][0]))
41
+ print("Anger: {}".format(output[0][1]))
42
+ print("Fear: {}".format(output[0][2]))
43
+ print("Happiness: {}".format(output[0][3]))
44
+ print("Sadness: {}".format(output[0][4]))
45
+ ````