Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
language:
|
4 |
-
-
|
|
|
|
|
|
|
5 |
base_model: RoBERTa
|
6 |
tags:
|
7 |
- generated_from_trainer
|
@@ -30,15 +33,23 @@ It achieves the following results on the evaluation set:
|
|
30 |
|
31 |
## Model description
|
32 |
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
## Intended uses & limitations
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
|
|
40 |
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
## Training procedure
|
44 |
|
@@ -61,14 +72,13 @@ The following hyperparameters were used during training:
|
|
61 |
|
62 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
63 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
64 |
-
| 0.2337 | 0
|
65 |
| 0.0513 | 2.0 | 3277 | 0.0387 | 0.9919 | 0.9919 | 0.9919 | 0.9919 |
|
66 |
-
| 0.0252 |
|
67 |
-
|
68 |
|
69 |
### Framework versions
|
70 |
|
71 |
- Transformers 4.44.2
|
72 |
- Pytorch 2.4.1+cu121
|
73 |
- Datasets 3.0.2
|
74 |
-
- Tokenizers 0.19.1
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
language:
|
4 |
+
- nep
|
5 |
+
- hi
|
6 |
+
- sa
|
7 |
+
- mr
|
8 |
base_model: RoBERTa
|
9 |
tags:
|
10 |
- generated_from_trainer
|
|
|
33 |
|
34 |
## Model description
|
35 |
|
36 |
+
This model is a fine-tuned version of RoBERTa, optimized for multiclass text classification on datasets written in
|
37 |
+
Devanagari script across multiple languages, including Nepali, Marathi, Sanskrit, Bhojpuri, and Hindi. By leveraging the
|
38 |
+
robust RoBERTa architecture, this model has been fine-tuned to recognize intricate patterns and contextual
|
39 |
+
cues within Devanagari text, achieving high accuracy and F1 scores for multiclass classification tasks.
|
40 |
|
41 |
## Intended uses & limitations
|
42 |
|
43 |
+
#### Intended Uses:
|
44 |
|
45 |
+
- Multiclass text classification for Nepali, Marathi, Sanskrit, Bhojpuri, and Hindi, written in Devanagari script.
|
46 |
+
- Suitable for sentiment analysis, topic categorization, and public opinion monitoring.
|
47 |
|
48 |
+
#### Limitations:
|
49 |
+
|
50 |
+
- Limited to Devanagari script; accuracy may drop on other scripts.
|
51 |
+
- Fine-tuned for multiclass classification; may not generalize well to other tasks or binary classifications.
|
52 |
+
- Language-specific nuances not present in the dataset may impact performance on certain dialects.
|
53 |
|
54 |
## Training procedure
|
55 |
|
|
|
72 |
|
73 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
74 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
75 |
+
| 0.2337 | 1.0 | 1638 | 0.0603 | 0.9874 | 0.9874 | 0.9875 | 0.9874 |
|
76 |
| 0.0513 | 2.0 | 3277 | 0.0387 | 0.9919 | 0.9919 | 0.9919 | 0.9919 |
|
77 |
+
| 0.0252 | 3.0 | 4914 | 0.0329 | 0.9935 | 0.9935 | 0.9935 | 0.9935 |
|
|
|
78 |
|
79 |
### Framework versions
|
80 |
|
81 |
- Transformers 4.44.2
|
82 |
- Pytorch 2.4.1+cu121
|
83 |
- Datasets 3.0.2
|
84 |
+
- Tokenizers 0.19.1
|