luluw commited on
Commit
b402f07
1 Parent(s): e75506c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -9
README.md CHANGED
@@ -1,7 +1,10 @@
1
  ---
2
  library_name: transformers
3
  language:
4
- - np
 
 
 
5
  base_model: RoBERTa
6
  tags:
7
  - generated_from_trainer
@@ -30,15 +33,23 @@ It achieves the following results on the evaluation set:
30
 
31
  ## Model description
32
 
33
- More information needed
 
 
 
34
 
35
  ## Intended uses & limitations
36
 
37
- More information needed
38
 
39
- ## Training and evaluation data
 
40
 
41
- More information needed
 
 
 
 
42
 
43
  ## Training procedure
44
 
@@ -61,14 +72,13 @@ The following hyperparameters were used during training:
61
 
62
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
63
  |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
64
- | 0.2337 | 0.9997 | 1638 | 0.0603 | 0.9874 | 0.9874 | 0.9875 | 0.9874 |
65
  | 0.0513 | 2.0 | 3277 | 0.0387 | 0.9919 | 0.9919 | 0.9919 | 0.9919 |
66
- | 0.0252 | 2.9991 | 4914 | 0.0329 | 0.9935 | 0.9935 | 0.9935 | 0.9935 |
67
-
68
 
69
  ### Framework versions
70
 
71
  - Transformers 4.44.2
72
  - Pytorch 2.4.1+cu121
73
  - Datasets 3.0.2
74
- - Tokenizers 0.19.1
 
1
  ---
2
  library_name: transformers
3
  language:
4
+ - nep
5
+ - hi
6
+ - sa
7
+ - mr
8
  base_model: RoBERTa
9
  tags:
10
  - generated_from_trainer
 
33
 
34
  ## Model description
35
 
36
+ This model is a fine-tuned version of RoBERTa, optimized for multiclass text classification on datasets written in
37
+ Devanagari script across multiple languages, including Nepali, Marathi, Sanskrit, Bhojpuri, and Hindi. By leveraging the
38
+ robust RoBERTa architecture, this model has been fine-tuned to recognize intricate patterns and contextual
39
+ cues within Devanagari text, achieving high accuracy and F1 scores for multiclass classification tasks.
40
 
41
  ## Intended uses & limitations
42
 
43
+ #### Intended Uses:
44
 
45
+ - Multiclass text classification for Nepali, Marathi, Sanskrit, Bhojpuri, and Hindi, written in Devanagari script.
46
+ - Suitable for sentiment analysis, topic categorization, and public opinion monitoring.
47
 
48
+ #### Limitations:
49
+
50
+ - Limited to Devanagari script; accuracy may drop on other scripts.
51
+ - Fine-tuned for multiclass classification; may not generalize well to other tasks or binary classifications.
52
+ - Language-specific nuances not present in the dataset may impact performance on certain dialects.
53
 
54
  ## Training procedure
55
 
 
72
 
73
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
74
  |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
75
+ | 0.2337 | 1.0 | 1638 | 0.0603 | 0.9874 | 0.9874 | 0.9875 | 0.9874 |
76
  | 0.0513 | 2.0 | 3277 | 0.0387 | 0.9919 | 0.9919 | 0.9919 | 0.9919 |
77
+ | 0.0252 | 3.0 | 4914 | 0.0329 | 0.9935 | 0.9935 | 0.9935 | 0.9935 |
 
78
 
79
  ### Framework versions
80
 
81
  - Transformers 4.44.2
82
  - Pytorch 2.4.1+cu121
83
  - Datasets 3.0.2
84
+ - Tokenizers 0.19.1