luis-cardoso-q commited on
Commit
ad4f7b5
1 Parent(s): 6dc586c

Add SetFit model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: 'loan repayment '
13
+ - text: 2023-F48
14
+ - text: 'acompte '
15
+ - text: 2023-12-1165548
16
+ - text: Facture 20230040
17
+ pipeline_tag: text-classification
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.73568281938326
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 128 tokens
51
+ - **Number of Classes:** 7 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------------------|:---------------------------------------------------------------------------------------------------------------------------------|
65
+ | company name | <ul><li>'Werbeverguetung Ford Mustang GT Cabrio Mueller Marc'</li><li>'ELEVEN PARIS'</li><li>'Saldo quota iscrizione '</li></ul> |
66
+ | salary | <ul><li>'stipendio gianoli gen 23'</li><li>'Salaire Fevrier'</li><li>'salaire'</li></ul> |
67
+ | invoice | <ul><li>'PAIEMENT DE FACTURE FAT00014728'</li><li>'fattura 3/24'</li><li>'saldo fattura'</li></ul> |
68
+ | random characters | <ul><li>'arretrati'</li><li>'Identnummer 00480257'</li><li>'CEP AGENCE'</li></ul> |
69
+ | refund | <ul><li>'versement'</li><li>'Remboursement frais transport'</li><li>'REMB FRAIS V / V LONDRES'</li></ul> |
70
+ | buying | <ul><li>'voiture'</li><li>'fourniture'</li><li>'fournisseur '</li></ul> |
71
+ | rent | <ul><li>'loyer'</li><li>'loyer mars 2023'</li><li>'loyer'</li></ul> |
72
+
73
+ ## Evaluation
74
+
75
+ ### Metrics
76
+ | Label | Accuracy |
77
+ |:--------|:---------|
78
+ | **all** | 0.7357 |
79
+
80
+ ## Uses
81
+
82
+ ### Direct Use for Inference
83
+
84
+ First install the SetFit library:
85
+
86
+ ```bash
87
+ pip install setfit
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+
92
+ ```python
93
+ from setfit import SetFitModel
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SetFitModel.from_pretrained("luis-cardoso-q/kotodama-multilingual-v3")
97
+ # Run inference
98
+ preds = model("2023-F48")
99
+ ```
100
+
101
+ <!--
102
+ ### Downstream Use
103
+
104
+ *List how someone could finetune this model on their own dataset.*
105
+ -->
106
+
107
+ <!--
108
+ ### Out-of-Scope Use
109
+
110
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
111
+ -->
112
+
113
+ <!--
114
+ ## Bias, Risks and Limitations
115
+
116
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
117
+ -->
118
+
119
+ <!--
120
+ ### Recommendations
121
+
122
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
123
+ -->
124
+
125
+ ## Training Details
126
+
127
+ ### Training Set Metrics
128
+ | Training set | Min | Median | Max |
129
+ |:-------------|:----|:-------|:----|
130
+ | Word count | 1 | 2.6689 | 16 |
131
+
132
+ | Label | Training Sample Count |
133
+ |:------------------|:----------------------|
134
+ | buying | 25 |
135
+ | company name | 73 |
136
+ | invoice | 128 |
137
+ | random characters | 128 |
138
+ | refund | 87 |
139
+ | rent | 38 |
140
+ | salary | 128 |
141
+
142
+ ### Training Hyperparameters
143
+ - batch_size: (16, 16)
144
+ - num_epochs: (1, 1)
145
+ - max_steps: -1
146
+ - sampling_strategy: oversampling
147
+ - body_learning_rate: (2e-05, 1e-05)
148
+ - head_learning_rate: 0.01
149
+ - loss: CosineSimilarityLoss
150
+ - distance_metric: cosine_distance
151
+ - margin: 0.25
152
+ - end_to_end: False
153
+ - use_amp: False
154
+ - warmup_proportion: 0.1
155
+ - seed: 42
156
+ - eval_max_steps: -1
157
+ - load_best_model_at_end: True
158
+
159
+ ### Training Results
160
+ | Epoch | Step | Training Loss | Validation Loss |
161
+ |:-------:|:---------:|:-------------:|:---------------:|
162
+ | 0.0001 | 1 | 0.2604 | - |
163
+ | 0.0026 | 50 | 0.3244 | - |
164
+ | 0.0053 | 100 | 0.2233 | - |
165
+ | 0.0079 | 150 | 0.2034 | - |
166
+ | 0.0105 | 200 | 0.2998 | - |
167
+ | 0.0131 | 250 | 0.2074 | - |
168
+ | 0.0158 | 300 | 0.1682 | - |
169
+ | 0.0184 | 350 | 0.1815 | - |
170
+ | 0.0210 | 400 | 0.155 | - |
171
+ | 0.0237 | 450 | 0.16 | - |
172
+ | 0.0263 | 500 | 0.117 | - |
173
+ | 0.0289 | 550 | 0.1685 | - |
174
+ | 0.0315 | 600 | 0.0348 | - |
175
+ | 0.0342 | 650 | 0.0912 | - |
176
+ | 0.0368 | 700 | 0.0217 | - |
177
+ | 0.0394 | 750 | 0.0417 | - |
178
+ | 0.0421 | 800 | 0.0592 | - |
179
+ | 0.0447 | 850 | 0.047 | - |
180
+ | 0.0473 | 900 | 0.0914 | - |
181
+ | 0.0499 | 950 | 0.0116 | - |
182
+ | 0.0526 | 1000 | 0.022 | - |
183
+ | 0.0552 | 1050 | 0.0018 | - |
184
+ | 0.0578 | 1100 | 0.0159 | - |
185
+ | 0.0605 | 1150 | 0.0097 | - |
186
+ | 0.0631 | 1200 | 0.066 | - |
187
+ | 0.0657 | 1250 | 0.0027 | - |
188
+ | 0.0683 | 1300 | 0.003 | - |
189
+ | 0.0710 | 1350 | 0.0146 | - |
190
+ | 0.0736 | 1400 | 0.009 | - |
191
+ | 0.0762 | 1450 | 0.0016 | - |
192
+ | 0.0789 | 1500 | 0.001 | - |
193
+ | 0.0815 | 1550 | 0.019 | - |
194
+ | 0.0841 | 1600 | 0.0015 | - |
195
+ | 0.0867 | 1650 | 0.0003 | - |
196
+ | 0.0894 | 1700 | 0.0929 | - |
197
+ | 0.0920 | 1750 | 0.013 | - |
198
+ | 0.0946 | 1800 | 0.0007 | - |
199
+ | 0.0973 | 1850 | 0.0413 | - |
200
+ | 0.0999 | 1900 | 0.0922 | - |
201
+ | 0.1025 | 1950 | 0.0009 | - |
202
+ | 0.1051 | 2000 | 0.001 | - |
203
+ | 0.1078 | 2050 | 0.0007 | - |
204
+ | 0.1104 | 2100 | 0.0086 | - |
205
+ | 0.1130 | 2150 | 0.0017 | - |
206
+ | 0.1157 | 2200 | 0.0048 | - |
207
+ | 0.1183 | 2250 | 0.0002 | - |
208
+ | 0.1209 | 2300 | 0.0518 | - |
209
+ | 0.1235 | 2350 | 0.0271 | - |
210
+ | 0.1262 | 2400 | 0.0138 | - |
211
+ | 0.1288 | 2450 | 0.0136 | - |
212
+ | 0.1314 | 2500 | 0.0444 | - |
213
+ | 0.1341 | 2550 | 0.0096 | - |
214
+ | 0.1367 | 2600 | 0.0064 | - |
215
+ | 0.1393 | 2650 | 0.0092 | - |
216
+ | 0.1419 | 2700 | 0.0012 | - |
217
+ | 0.1446 | 2750 | 0.0044 | - |
218
+ | 0.1472 | 2800 | 0.0121 | - |
219
+ | 0.1498 | 2850 | 0.0004 | - |
220
+ | 0.1525 | 2900 | 0.0002 | - |
221
+ | 0.1551 | 2950 | 0.0008 | - |
222
+ | 0.1577 | 3000 | 0.0034 | - |
223
+ | 0.1603 | 3050 | 0.0002 | - |
224
+ | 0.1630 | 3100 | 0.0152 | - |
225
+ | 0.1656 | 3150 | 0.0195 | - |
226
+ | 0.1682 | 3200 | 0.0005 | - |
227
+ | 0.1709 | 3250 | 0.0002 | - |
228
+ | 0.1735 | 3300 | 0.0343 | - |
229
+ | 0.1761 | 3350 | 0.0095 | - |
230
+ | 0.1787 | 3400 | 0.0354 | - |
231
+ | 0.1814 | 3450 | 0.0085 | - |
232
+ | 0.1840 | 3500 | 0.001 | - |
233
+ | 0.1866 | 3550 | 0.0194 | - |
234
+ | 0.1893 | 3600 | 0.017 | - |
235
+ | 0.1919 | 3650 | 0.0003 | - |
236
+ | 0.1945 | 3700 | 0.0024 | - |
237
+ | 0.1972 | 3750 | 0.06 | - |
238
+ | 0.1998 | 3800 | 0.0006 | - |
239
+ | 0.2024 | 3850 | 0.0003 | - |
240
+ | 0.2050 | 3900 | 0.0311 | - |
241
+ | 0.2077 | 3950 | 0.023 | - |
242
+ | 0.2103 | 4000 | 0.0039 | - |
243
+ | 0.2129 | 4050 | 0.0085 | - |
244
+ | 0.2156 | 4100 | 0.0036 | - |
245
+ | 0.2182 | 4150 | 0.0015 | - |
246
+ | 0.2208 | 4200 | 0.0584 | - |
247
+ | 0.2234 | 4250 | 0.0004 | - |
248
+ | 0.2261 | 4300 | 0.0082 | - |
249
+ | 0.2287 | 4350 | 0.0001 | - |
250
+ | 0.2313 | 4400 | 0.0044 | - |
251
+ | 0.2340 | 4450 | 0.0003 | - |
252
+ | 0.2366 | 4500 | 0.0495 | - |
253
+ | 0.2392 | 4550 | 0.0073 | - |
254
+ | 0.2418 | 4600 | 0.0152 | - |
255
+ | 0.2445 | 4650 | 0.0033 | - |
256
+ | 0.2471 | 4700 | 0.0005 | - |
257
+ | 0.2497 | 4750 | 0.0102 | - |
258
+ | 0.2524 | 4800 | 0.046 | - |
259
+ | 0.2550 | 4850 | 0.0028 | - |
260
+ | 0.2576 | 4900 | 0.0014 | - |
261
+ | 0.2602 | 4950 | 0.0118 | - |
262
+ | 0.2629 | 5000 | 0.0042 | - |
263
+ | 0.2655 | 5050 | 0.0005 | - |
264
+ | 0.2681 | 5100 | 0.0031 | - |
265
+ | 0.2708 | 5150 | 0.0002 | - |
266
+ | 0.2734 | 5200 | 0.002 | - |
267
+ | 0.2760 | 5250 | 0.0111 | - |
268
+ | 0.2786 | 5300 | 0.0286 | - |
269
+ | 0.2813 | 5350 | 0.0009 | - |
270
+ | 0.2839 | 5400 | 0.0023 | - |
271
+ | 0.2865 | 5450 | 0.0079 | - |
272
+ | 0.2892 | 5500 | 0.0691 | - |
273
+ | 0.2918 | 5550 | 0.0403 | - |
274
+ | 0.2944 | 5600 | 0.0002 | - |
275
+ | 0.2970 | 5650 | 0.0057 | - |
276
+ | 0.2997 | 5700 | 0.0047 | - |
277
+ | 0.3023 | 5750 | 0.0322 | - |
278
+ | 0.3049 | 5800 | 0.0097 | - |
279
+ | 0.3076 | 5850 | 0.0012 | - |
280
+ | 0.3102 | 5900 | 0.0047 | - |
281
+ | 0.3128 | 5950 | 0.0925 | - |
282
+ | 0.3154 | 6000 | 0.0562 | - |
283
+ | 0.3181 | 6050 | 0.0058 | - |
284
+ | 0.3207 | 6100 | 0.0001 | - |
285
+ | 0.3233 | 6150 | 0.0029 | - |
286
+ | 0.3260 | 6200 | 0.0001 | - |
287
+ | 0.3286 | 6250 | 0.0035 | - |
288
+ | 0.3312 | 6300 | 0.0013 | - |
289
+ | 0.3338 | 6350 | 0.0152 | - |
290
+ | 0.3365 | 6400 | 0.0004 | - |
291
+ | 0.3391 | 6450 | 0.0114 | - |
292
+ | 0.3417 | 6500 | 0.0906 | - |
293
+ | 0.3444 | 6550 | 0.0005 | - |
294
+ | 0.3470 | 6600 | 0.0028 | - |
295
+ | 0.3496 | 6650 | 0.0395 | - |
296
+ | 0.3522 | 6700 | 0.0001 | - |
297
+ | 0.3549 | 6750 | 0.0044 | - |
298
+ | 0.3575 | 6800 | 0.0121 | - |
299
+ | 0.3601 | 6850 | 0.0012 | - |
300
+ | 0.3628 | 6900 | 0.0193 | - |
301
+ | 0.3654 | 6950 | 0.0014 | - |
302
+ | 0.3680 | 7000 | 0.0001 | - |
303
+ | 0.3706 | 7050 | 0.0618 | - |
304
+ | 0.3733 | 7100 | 0.0066 | - |
305
+ | 0.3759 | 7150 | 0.0426 | - |
306
+ | 0.3785 | 7200 | 0.0281 | - |
307
+ | 0.3812 | 7250 | 0.0254 | - |
308
+ | 0.3838 | 7300 | 0.0008 | - |
309
+ | 0.3864 | 7350 | 0.0047 | - |
310
+ | 0.3890 | 7400 | 0.0088 | - |
311
+ | 0.3917 | 7450 | 0.0004 | - |
312
+ | 0.3943 | 7500 | 0.0054 | - |
313
+ | 0.3969 | 7550 | 0.0371 | - |
314
+ | 0.3996 | 7600 | 0.0001 | - |
315
+ | 0.4022 | 7650 | 0.0082 | - |
316
+ | 0.4048 | 7700 | 0.0162 | - |
317
+ | 0.4074 | 7750 | 0.0093 | - |
318
+ | 0.4101 | 7800 | 0.0115 | - |
319
+ | 0.4127 | 7850 | 0.0114 | - |
320
+ | 0.4153 | 7900 | 0.0001 | - |
321
+ | 0.4180 | 7950 | 0.0002 | - |
322
+ | 0.4206 | 8000 | 0.0098 | - |
323
+ | 0.4232 | 8050 | 0.0001 | - |
324
+ | 0.4258 | 8100 | 0.0 | - |
325
+ | 0.4285 | 8150 | 0.0104 | - |
326
+ | 0.4311 | 8200 | 0.0564 | - |
327
+ | 0.4337 | 8250 | 0.0002 | - |
328
+ | 0.4364 | 8300 | 0.0176 | - |
329
+ | 0.4390 | 8350 | 0.0109 | - |
330
+ | 0.4416 | 8400 | 0.0001 | - |
331
+ | 0.4442 | 8450 | 0.0053 | - |
332
+ | 0.4469 | 8500 | 0.0629 | - |
333
+ | 0.4495 | 8550 | 0.0324 | - |
334
+ | 0.4521 | 8600 | 0.0003 | - |
335
+ | 0.4548 | 8650 | 0.0025 | - |
336
+ | 0.4574 | 8700 | 0.0032 | - |
337
+ | 0.4600 | 8750 | 0.0002 | - |
338
+ | 0.4626 | 8800 | 0.0001 | - |
339
+ | 0.4653 | 8850 | 0.0475 | - |
340
+ | 0.4679 | 8900 | 0.0114 | - |
341
+ | 0.4705 | 8950 | 0.0001 | - |
342
+ | 0.4732 | 9000 | 0.0028 | - |
343
+ | 0.4758 | 9050 | 0.0001 | - |
344
+ | 0.4784 | 9100 | 0.0002 | - |
345
+ | 0.4810 | 9150 | 0.0001 | - |
346
+ | 0.4837 | 9200 | 0.0001 | - |
347
+ | 0.4863 | 9250 | 0.0021 | - |
348
+ | 0.4889 | 9300 | 0.0001 | - |
349
+ | 0.4916 | 9350 | 0.0014 | - |
350
+ | 0.4942 | 9400 | 0.0176 | - |
351
+ | 0.4968 | 9450 | 0.0005 | - |
352
+ | 0.4994 | 9500 | 0.0001 | - |
353
+ | 0.5021 | 9550 | 0.0314 | - |
354
+ | 0.5047 | 9600 | 0.0613 | - |
355
+ | 0.5073 | 9650 | 0.018 | - |
356
+ | 0.5100 | 9700 | 0.0 | - |
357
+ | 0.5126 | 9750 | 0.0023 | - |
358
+ | 0.5152 | 9800 | 0.0013 | - |
359
+ | 0.5178 | 9850 | 0.0001 | - |
360
+ | 0.5205 | 9900 | 0.0003 | - |
361
+ | 0.5231 | 9950 | 0.001 | - |
362
+ | 0.5257 | 10000 | 0.0001 | - |
363
+ | 0.5284 | 10050 | 0.0193 | - |
364
+ | 0.5310 | 10100 | 0.0051 | - |
365
+ | 0.5336 | 10150 | 0.0001 | - |
366
+ | 0.5362 | 10200 | 0.0005 | - |
367
+ | 0.5389 | 10250 | 0.0 | - |
368
+ | 0.5415 | 10300 | 0.0001 | - |
369
+ | 0.5441 | 10350 | 0.0001 | - |
370
+ | 0.5468 | 10400 | 0.0037 | - |
371
+ | 0.5494 | 10450 | 0.0309 | - |
372
+ | 0.5520 | 10500 | 0.0286 | - |
373
+ | 0.5547 | 10550 | 0.0 | - |
374
+ | 0.5573 | 10600 | 0.0155 | - |
375
+ | 0.5599 | 10650 | 0.0001 | - |
376
+ | 0.5625 | 10700 | 0.0077 | - |
377
+ | 0.5652 | 10750 | 0.0153 | - |
378
+ | 0.5678 | 10800 | 0.0042 | - |
379
+ | 0.5704 | 10850 | 0.0103 | - |
380
+ | 0.5731 | 10900 | 0.0097 | - |
381
+ | 0.5757 | 10950 | 0.0109 | - |
382
+ | 0.5783 | 11000 | 0.0001 | - |
383
+ | 0.5809 | 11050 | 0.0103 | - |
384
+ | 0.5836 | 11100 | 0.0024 | - |
385
+ | 0.5862 | 11150 | 0.0001 | - |
386
+ | 0.5888 | 11200 | 0.0487 | - |
387
+ | 0.5915 | 11250 | 0.0009 | - |
388
+ | 0.5941 | 11300 | 0.0001 | - |
389
+ | 0.5967 | 11350 | 0.0002 | - |
390
+ | 0.5993 | 11400 | 0.0035 | - |
391
+ | 0.6020 | 11450 | 0.0005 | - |
392
+ | 0.6046 | 11500 | 0.0001 | - |
393
+ | 0.6072 | 11550 | 0.0049 | - |
394
+ | 0.6099 | 11600 | 0.0396 | - |
395
+ | 0.6125 | 11650 | 0.0177 | - |
396
+ | 0.6151 | 11700 | 0.0071 | - |
397
+ | 0.6177 | 11750 | 0.0071 | - |
398
+ | 0.6204 | 11800 | 0.0111 | - |
399
+ | 0.6230 | 11850 | 0.0145 | - |
400
+ | 0.6256 | 11900 | 0.037 | - |
401
+ | 0.6283 | 11950 | 0.0046 | - |
402
+ | 0.6309 | 12000 | 0.0258 | - |
403
+ | 0.6335 | 12050 | 0.0002 | - |
404
+ | 0.6361 | 12100 | 0.002 | - |
405
+ | 0.6388 | 12150 | 0.0119 | - |
406
+ | 0.6414 | 12200 | 0.0079 | - |
407
+ | 0.6440 | 12250 | 0.0239 | - |
408
+ | 0.6467 | 12300 | 0.0037 | - |
409
+ | 0.6493 | 12350 | 0.0366 | - |
410
+ | 0.6519 | 12400 | 0.0201 | - |
411
+ | 0.6545 | 12450 | 0.002 | - |
412
+ | 0.6572 | 12500 | 0.0652 | - |
413
+ | 0.6598 | 12550 | 0.005 | - |
414
+ | 0.6624 | 12600 | 0.0034 | - |
415
+ | 0.6651 | 12650 | 0.0003 | - |
416
+ | 0.6677 | 12700 | 0.0022 | - |
417
+ | 0.6703 | 12750 | 0.0001 | - |
418
+ | 0.6729 | 12800 | 0.0175 | - |
419
+ | 0.6756 | 12850 | 0.0003 | - |
420
+ | 0.6782 | 12900 | 0.0085 | - |
421
+ | 0.6808 | 12950 | 0.0036 | - |
422
+ | 0.6835 | 13000 | 0.0 | - |
423
+ | 0.6861 | 13050 | 0.0097 | - |
424
+ | 0.6887 | 13100 | 0.006 | - |
425
+ | 0.6913 | 13150 | 0.0001 | - |
426
+ | 0.6940 | 13200 | 0.0001 | - |
427
+ | 0.6966 | 13250 | 0.0379 | - |
428
+ | 0.6992 | 13300 | 0.0076 | - |
429
+ | 0.7019 | 13350 | 0.0627 | - |
430
+ | 0.7045 | 13400 | 0.0605 | - |
431
+ | 0.7071 | 13450 | 0.0081 | - |
432
+ | 0.7097 | 13500 | 0.0018 | - |
433
+ | 0.7124 | 13550 | 0.018 | - |
434
+ | 0.7150 | 13600 | 0.0035 | - |
435
+ | 0.7176 | 13650 | 0.0001 | - |
436
+ | 0.7203 | 13700 | 0.0001 | - |
437
+ | 0.7229 | 13750 | 0.0507 | - |
438
+ | 0.7255 | 13800 | 0.0082 | - |
439
+ | 0.7281 | 13850 | 0.0082 | - |
440
+ | 0.7308 | 13900 | 0.0106 | - |
441
+ | 0.7334 | 13950 | 0.0067 | - |
442
+ | 0.7360 | 14000 | 0.0062 | - |
443
+ | 0.7387 | 14050 | 0.0001 | - |
444
+ | 0.7413 | 14100 | 0.0246 | - |
445
+ | 0.7439 | 14150 | 0.0033 | - |
446
+ | 0.7465 | 14200 | 0.0001 | - |
447
+ | 0.7492 | 14250 | 0.0432 | - |
448
+ | 0.7518 | 14300 | 0.0502 | - |
449
+ | 0.7544 | 14350 | 0.0079 | - |
450
+ | 0.7571 | 14400 | 0.0291 | - |
451
+ | 0.7597 | 14450 | 0.0002 | - |
452
+ | 0.7623 | 14500 | 0.0029 | - |
453
+ | 0.7649 | 14550 | 0.0321 | - |
454
+ | 0.7676 | 14600 | 0.0002 | - |
455
+ | 0.7702 | 14650 | 0.0053 | - |
456
+ | 0.7728 | 14700 | 0.0094 | - |
457
+ | 0.7755 | 14750 | 0.0156 | - |
458
+ | 0.7781 | 14800 | 0.071 | - |
459
+ | 0.7807 | 14850 | 0.0001 | - |
460
+ | 0.7833 | 14900 | 0.0037 | - |
461
+ | 0.7860 | 14950 | 0.0544 | - |
462
+ | 0.7886 | 15000 | 0.0034 | - |
463
+ | 0.7912 | 15050 | 0.0018 | - |
464
+ | 0.7939 | 15100 | 0.0014 | - |
465
+ | 0.7965 | 15150 | 0.0189 | - |
466
+ | 0.7991 | 15200 | 0.0001 | - |
467
+ | 0.8017 | 15250 | 0.0057 | - |
468
+ | 0.8044 | 15300 | 0.0001 | - |
469
+ | 0.8070 | 15350 | 0.0002 | - |
470
+ | 0.8096 | 15400 | 0.0003 | - |
471
+ | 0.8123 | 15450 | 0.0006 | - |
472
+ | 0.8149 | 15500 | 0.1085 | - |
473
+ | 0.8175 | 15550 | 0.0003 | - |
474
+ | 0.8201 | 15600 | 0.0001 | - |
475
+ | 0.8228 | 15650 | 0.0005 | - |
476
+ | 0.8254 | 15700 | 0.014 | - |
477
+ | 0.8280 | 15750 | 0.0036 | - |
478
+ | 0.8307 | 15800 | 0.0001 | - |
479
+ | 0.8333 | 15850 | 0.0 | - |
480
+ | 0.8359 | 15900 | 0.0 | - |
481
+ | 0.8385 | 15950 | 0.0001 | - |
482
+ | 0.8412 | 16000 | 0.0001 | - |
483
+ | 0.8438 | 16050 | 0.0271 | - |
484
+ | 0.8464 | 16100 | 0.0093 | - |
485
+ | 0.8491 | 16150 | 0.0444 | - |
486
+ | 0.8517 | 16200 | 0.0002 | - |
487
+ | 0.8543 | 16250 | 0.0007 | - |
488
+ | 0.8569 | 16300 | 0.0002 | - |
489
+ | 0.8596 | 16350 | 0.0012 | - |
490
+ | 0.8622 | 16400 | 0.0 | - |
491
+ | 0.8648 | 16450 | 0.0177 | - |
492
+ | 0.8675 | 16500 | 0.0342 | - |
493
+ | 0.8701 | 16550 | 0.0288 | - |
494
+ | 0.8727 | 16600 | 0.0 | - |
495
+ | 0.8753 | 16650 | 0.0024 | - |
496
+ | 0.8780 | 16700 | 0.0003 | - |
497
+ | 0.8806 | 16750 | 0.0063 | - |
498
+ | 0.8832 | 16800 | 0.0442 | - |
499
+ | 0.8859 | 16850 | 0.0092 | - |
500
+ | 0.8885 | 16900 | 0.0089 | - |
501
+ | 0.8911 | 16950 | 0.0027 | - |
502
+ | 0.8937 | 17000 | 0.0521 | - |
503
+ | 0.8964 | 17050 | 0.0023 | - |
504
+ | 0.8990 | 17100 | 0.051 | - |
505
+ | 0.9016 | 17150 | 0.0015 | - |
506
+ | 0.9043 | 17200 | 0.0003 | - |
507
+ | 0.9069 | 17250 | 0.0177 | - |
508
+ | 0.9095 | 17300 | 0.0031 | - |
509
+ | 0.9121 | 17350 | 0.0205 | - |
510
+ | 0.9148 | 17400 | 0.0172 | - |
511
+ | 0.9174 | 17450 | 0.0001 | - |
512
+ | 0.9200 | 17500 | 0.005 | - |
513
+ | 0.9227 | 17550 | 0.0409 | - |
514
+ | 0.9253 | 17600 | 0.0001 | - |
515
+ | 0.9279 | 17650 | 0.0 | - |
516
+ | 0.9306 | 17700 | 0.0002 | - |
517
+ | 0.9332 | 17750 | 0.0274 | - |
518
+ | 0.9358 | 17800 | 0.0077 | - |
519
+ | 0.9384 | 17850 | 0.0078 | - |
520
+ | 0.9411 | 17900 | 0.0001 | - |
521
+ | 0.9437 | 17950 | 0.0 | - |
522
+ | 0.9463 | 18000 | 0.0437 | - |
523
+ | 0.9490 | 18050 | 0.0143 | - |
524
+ | 0.9516 | 18100 | 0.001 | - |
525
+ | 0.9542 | 18150 | 0.0001 | - |
526
+ | 0.9568 | 18200 | 0.0428 | - |
527
+ | 0.9595 | 18250 | 0.0036 | - |
528
+ | 0.9621 | 18300 | 0.0001 | - |
529
+ | 0.9647 | 18350 | 0.0001 | - |
530
+ | 0.9674 | 18400 | 0.0063 | - |
531
+ | 0.9700 | 18450 | 0.0 | - |
532
+ | 0.9726 | 18500 | 0.0196 | - |
533
+ | 0.9752 | 18550 | 0.0001 | - |
534
+ | 0.9779 | 18600 | 0.0001 | - |
535
+ | 0.9805 | 18650 | 0.0001 | - |
536
+ | 0.9831 | 18700 | 0.0397 | - |
537
+ | 0.9858 | 18750 | 0.008 | - |
538
+ | 0.9884 | 18800 | 0.015 | - |
539
+ | 0.9910 | 18850 | 0.0 | - |
540
+ | 0.9936 | 18900 | 0.003 | - |
541
+ | 0.9963 | 18950 | 0.025 | - |
542
+ | 0.9989 | 19000 | 0.003 | - |
543
+ | **1.0** | **19021** | **-** | **0.2343** |
544
+
545
+ * The bold row denotes the saved checkpoint.
546
+ ### Framework Versions
547
+ - Python: 3.10.12
548
+ - SetFit: 1.0.3
549
+ - Sentence Transformers: 2.4.0
550
+ - Transformers: 4.38.1
551
+ - PyTorch: 2.1.0+cu118
552
+ - Datasets: 2.17.1
553
+ - Tokenizers: 0.15.2
554
+
555
+ ## Citation
556
+
557
+ ### BibTeX
558
+ ```bibtex
559
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
560
+ doi = {10.48550/ARXIV.2209.11055},
561
+ url = {https://arxiv.org/abs/2209.11055},
562
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
563
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
564
+ title = {Efficient Few-Shot Learning Without Prompts},
565
+ publisher = {arXiv},
566
+ year = {2022},
567
+ copyright = {Creative Commons Attribution 4.0 International}
568
+ }
569
+ ```
570
+
571
+ <!--
572
+ ## Glossary
573
+
574
+ *Clearly define terms in order to be accessible across audiences.*
575
+ -->
576
+
577
+ <!--
578
+ ## Model Card Authors
579
+
580
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
581
+ -->
582
+
583
+ <!--
584
+ ## Model Card Contact
585
+
586
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
587
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "old_models/paraphrase-multilingual-mpnet-base-v2/0_Transformer",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "transformers_version": "4.7.0",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 250002
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "buying",
5
+ "company name",
6
+ "invoice",
7
+ "random characters",
8
+ "refund",
9
+ "rent",
10
+ "salary"
11
+ ]
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b32022e56458b01fe48ccd4a8058c9c677eb4fa7beedf6225b6a6eeeec8e3cc8
3
+ size 1112197096
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd95d8c5bc1ac42505bc3870f69356f2bf9c44134449433cc465349a62d74bf2
3
+ size 44373
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa685fc160bbdbab64058d4fc91b60e62d207e8dc60b9af5c002c5ab946ded00
3
+ size 17083009
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 128,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }