luis-cardoso-q
commited on
Commit
•
ad4f7b5
1
Parent(s):
6dc586c
Add SetFit model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +587 -0
- config.json +27 -0
- config_sentence_transformers.json +9 -0
- config_setfit.json +12 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +61 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- sentence-transformers
|
6 |
+
- text-classification
|
7 |
+
- generated_from_setfit_trainer
|
8 |
+
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
widget:
|
12 |
+
- text: 'loan repayment '
|
13 |
+
- text: 2023-F48
|
14 |
+
- text: 'acompte '
|
15 |
+
- text: 2023-12-1165548
|
16 |
+
- text: Facture 20230040
|
17 |
+
pipeline_tag: text-classification
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: accuracy
|
31 |
+
value: 0.73568281938326
|
32 |
+
name: Accuracy
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with sentence-transformers/paraphrase-multilingual-mpnet-base-v2
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 128 tokens
|
51 |
+
- **Number of Classes:** 7 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------------------|:---------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| company name | <ul><li>'Werbeverguetung Ford Mustang GT Cabrio Mueller Marc'</li><li>'ELEVEN PARIS'</li><li>'Saldo quota iscrizione '</li></ul> |
|
66 |
+
| salary | <ul><li>'stipendio gianoli gen 23'</li><li>'Salaire Fevrier'</li><li>'salaire'</li></ul> |
|
67 |
+
| invoice | <ul><li>'PAIEMENT DE FACTURE FAT00014728'</li><li>'fattura 3/24'</li><li>'saldo fattura'</li></ul> |
|
68 |
+
| random characters | <ul><li>'arretrati'</li><li>'Identnummer 00480257'</li><li>'CEP AGENCE'</li></ul> |
|
69 |
+
| refund | <ul><li>'versement'</li><li>'Remboursement frais transport'</li><li>'REMB FRAIS V / V LONDRES'</li></ul> |
|
70 |
+
| buying | <ul><li>'voiture'</li><li>'fourniture'</li><li>'fournisseur '</li></ul> |
|
71 |
+
| rent | <ul><li>'loyer'</li><li>'loyer mars 2023'</li><li>'loyer'</li></ul> |
|
72 |
+
|
73 |
+
## Evaluation
|
74 |
+
|
75 |
+
### Metrics
|
76 |
+
| Label | Accuracy |
|
77 |
+
|:--------|:---------|
|
78 |
+
| **all** | 0.7357 |
|
79 |
+
|
80 |
+
## Uses
|
81 |
+
|
82 |
+
### Direct Use for Inference
|
83 |
+
|
84 |
+
First install the SetFit library:
|
85 |
+
|
86 |
+
```bash
|
87 |
+
pip install setfit
|
88 |
+
```
|
89 |
+
|
90 |
+
Then you can load this model and run inference.
|
91 |
+
|
92 |
+
```python
|
93 |
+
from setfit import SetFitModel
|
94 |
+
|
95 |
+
# Download from the 🤗 Hub
|
96 |
+
model = SetFitModel.from_pretrained("luis-cardoso-q/kotodama-multilingual-v3")
|
97 |
+
# Run inference
|
98 |
+
preds = model("2023-F48")
|
99 |
+
```
|
100 |
+
|
101 |
+
<!--
|
102 |
+
### Downstream Use
|
103 |
+
|
104 |
+
*List how someone could finetune this model on their own dataset.*
|
105 |
+
-->
|
106 |
+
|
107 |
+
<!--
|
108 |
+
### Out-of-Scope Use
|
109 |
+
|
110 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
111 |
+
-->
|
112 |
+
|
113 |
+
<!--
|
114 |
+
## Bias, Risks and Limitations
|
115 |
+
|
116 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
117 |
+
-->
|
118 |
+
|
119 |
+
<!--
|
120 |
+
### Recommendations
|
121 |
+
|
122 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
123 |
+
-->
|
124 |
+
|
125 |
+
## Training Details
|
126 |
+
|
127 |
+
### Training Set Metrics
|
128 |
+
| Training set | Min | Median | Max |
|
129 |
+
|:-------------|:----|:-------|:----|
|
130 |
+
| Word count | 1 | 2.6689 | 16 |
|
131 |
+
|
132 |
+
| Label | Training Sample Count |
|
133 |
+
|:------------------|:----------------------|
|
134 |
+
| buying | 25 |
|
135 |
+
| company name | 73 |
|
136 |
+
| invoice | 128 |
|
137 |
+
| random characters | 128 |
|
138 |
+
| refund | 87 |
|
139 |
+
| rent | 38 |
|
140 |
+
| salary | 128 |
|
141 |
+
|
142 |
+
### Training Hyperparameters
|
143 |
+
- batch_size: (16, 16)
|
144 |
+
- num_epochs: (1, 1)
|
145 |
+
- max_steps: -1
|
146 |
+
- sampling_strategy: oversampling
|
147 |
+
- body_learning_rate: (2e-05, 1e-05)
|
148 |
+
- head_learning_rate: 0.01
|
149 |
+
- loss: CosineSimilarityLoss
|
150 |
+
- distance_metric: cosine_distance
|
151 |
+
- margin: 0.25
|
152 |
+
- end_to_end: False
|
153 |
+
- use_amp: False
|
154 |
+
- warmup_proportion: 0.1
|
155 |
+
- seed: 42
|
156 |
+
- eval_max_steps: -1
|
157 |
+
- load_best_model_at_end: True
|
158 |
+
|
159 |
+
### Training Results
|
160 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
161 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
162 |
+
| 0.0001 | 1 | 0.2604 | - |
|
163 |
+
| 0.0026 | 50 | 0.3244 | - |
|
164 |
+
| 0.0053 | 100 | 0.2233 | - |
|
165 |
+
| 0.0079 | 150 | 0.2034 | - |
|
166 |
+
| 0.0105 | 200 | 0.2998 | - |
|
167 |
+
| 0.0131 | 250 | 0.2074 | - |
|
168 |
+
| 0.0158 | 300 | 0.1682 | - |
|
169 |
+
| 0.0184 | 350 | 0.1815 | - |
|
170 |
+
| 0.0210 | 400 | 0.155 | - |
|
171 |
+
| 0.0237 | 450 | 0.16 | - |
|
172 |
+
| 0.0263 | 500 | 0.117 | - |
|
173 |
+
| 0.0289 | 550 | 0.1685 | - |
|
174 |
+
| 0.0315 | 600 | 0.0348 | - |
|
175 |
+
| 0.0342 | 650 | 0.0912 | - |
|
176 |
+
| 0.0368 | 700 | 0.0217 | - |
|
177 |
+
| 0.0394 | 750 | 0.0417 | - |
|
178 |
+
| 0.0421 | 800 | 0.0592 | - |
|
179 |
+
| 0.0447 | 850 | 0.047 | - |
|
180 |
+
| 0.0473 | 900 | 0.0914 | - |
|
181 |
+
| 0.0499 | 950 | 0.0116 | - |
|
182 |
+
| 0.0526 | 1000 | 0.022 | - |
|
183 |
+
| 0.0552 | 1050 | 0.0018 | - |
|
184 |
+
| 0.0578 | 1100 | 0.0159 | - |
|
185 |
+
| 0.0605 | 1150 | 0.0097 | - |
|
186 |
+
| 0.0631 | 1200 | 0.066 | - |
|
187 |
+
| 0.0657 | 1250 | 0.0027 | - |
|
188 |
+
| 0.0683 | 1300 | 0.003 | - |
|
189 |
+
| 0.0710 | 1350 | 0.0146 | - |
|
190 |
+
| 0.0736 | 1400 | 0.009 | - |
|
191 |
+
| 0.0762 | 1450 | 0.0016 | - |
|
192 |
+
| 0.0789 | 1500 | 0.001 | - |
|
193 |
+
| 0.0815 | 1550 | 0.019 | - |
|
194 |
+
| 0.0841 | 1600 | 0.0015 | - |
|
195 |
+
| 0.0867 | 1650 | 0.0003 | - |
|
196 |
+
| 0.0894 | 1700 | 0.0929 | - |
|
197 |
+
| 0.0920 | 1750 | 0.013 | - |
|
198 |
+
| 0.0946 | 1800 | 0.0007 | - |
|
199 |
+
| 0.0973 | 1850 | 0.0413 | - |
|
200 |
+
| 0.0999 | 1900 | 0.0922 | - |
|
201 |
+
| 0.1025 | 1950 | 0.0009 | - |
|
202 |
+
| 0.1051 | 2000 | 0.001 | - |
|
203 |
+
| 0.1078 | 2050 | 0.0007 | - |
|
204 |
+
| 0.1104 | 2100 | 0.0086 | - |
|
205 |
+
| 0.1130 | 2150 | 0.0017 | - |
|
206 |
+
| 0.1157 | 2200 | 0.0048 | - |
|
207 |
+
| 0.1183 | 2250 | 0.0002 | - |
|
208 |
+
| 0.1209 | 2300 | 0.0518 | - |
|
209 |
+
| 0.1235 | 2350 | 0.0271 | - |
|
210 |
+
| 0.1262 | 2400 | 0.0138 | - |
|
211 |
+
| 0.1288 | 2450 | 0.0136 | - |
|
212 |
+
| 0.1314 | 2500 | 0.0444 | - |
|
213 |
+
| 0.1341 | 2550 | 0.0096 | - |
|
214 |
+
| 0.1367 | 2600 | 0.0064 | - |
|
215 |
+
| 0.1393 | 2650 | 0.0092 | - |
|
216 |
+
| 0.1419 | 2700 | 0.0012 | - |
|
217 |
+
| 0.1446 | 2750 | 0.0044 | - |
|
218 |
+
| 0.1472 | 2800 | 0.0121 | - |
|
219 |
+
| 0.1498 | 2850 | 0.0004 | - |
|
220 |
+
| 0.1525 | 2900 | 0.0002 | - |
|
221 |
+
| 0.1551 | 2950 | 0.0008 | - |
|
222 |
+
| 0.1577 | 3000 | 0.0034 | - |
|
223 |
+
| 0.1603 | 3050 | 0.0002 | - |
|
224 |
+
| 0.1630 | 3100 | 0.0152 | - |
|
225 |
+
| 0.1656 | 3150 | 0.0195 | - |
|
226 |
+
| 0.1682 | 3200 | 0.0005 | - |
|
227 |
+
| 0.1709 | 3250 | 0.0002 | - |
|
228 |
+
| 0.1735 | 3300 | 0.0343 | - |
|
229 |
+
| 0.1761 | 3350 | 0.0095 | - |
|
230 |
+
| 0.1787 | 3400 | 0.0354 | - |
|
231 |
+
| 0.1814 | 3450 | 0.0085 | - |
|
232 |
+
| 0.1840 | 3500 | 0.001 | - |
|
233 |
+
| 0.1866 | 3550 | 0.0194 | - |
|
234 |
+
| 0.1893 | 3600 | 0.017 | - |
|
235 |
+
| 0.1919 | 3650 | 0.0003 | - |
|
236 |
+
| 0.1945 | 3700 | 0.0024 | - |
|
237 |
+
| 0.1972 | 3750 | 0.06 | - |
|
238 |
+
| 0.1998 | 3800 | 0.0006 | - |
|
239 |
+
| 0.2024 | 3850 | 0.0003 | - |
|
240 |
+
| 0.2050 | 3900 | 0.0311 | - |
|
241 |
+
| 0.2077 | 3950 | 0.023 | - |
|
242 |
+
| 0.2103 | 4000 | 0.0039 | - |
|
243 |
+
| 0.2129 | 4050 | 0.0085 | - |
|
244 |
+
| 0.2156 | 4100 | 0.0036 | - |
|
245 |
+
| 0.2182 | 4150 | 0.0015 | - |
|
246 |
+
| 0.2208 | 4200 | 0.0584 | - |
|
247 |
+
| 0.2234 | 4250 | 0.0004 | - |
|
248 |
+
| 0.2261 | 4300 | 0.0082 | - |
|
249 |
+
| 0.2287 | 4350 | 0.0001 | - |
|
250 |
+
| 0.2313 | 4400 | 0.0044 | - |
|
251 |
+
| 0.2340 | 4450 | 0.0003 | - |
|
252 |
+
| 0.2366 | 4500 | 0.0495 | - |
|
253 |
+
| 0.2392 | 4550 | 0.0073 | - |
|
254 |
+
| 0.2418 | 4600 | 0.0152 | - |
|
255 |
+
| 0.2445 | 4650 | 0.0033 | - |
|
256 |
+
| 0.2471 | 4700 | 0.0005 | - |
|
257 |
+
| 0.2497 | 4750 | 0.0102 | - |
|
258 |
+
| 0.2524 | 4800 | 0.046 | - |
|
259 |
+
| 0.2550 | 4850 | 0.0028 | - |
|
260 |
+
| 0.2576 | 4900 | 0.0014 | - |
|
261 |
+
| 0.2602 | 4950 | 0.0118 | - |
|
262 |
+
| 0.2629 | 5000 | 0.0042 | - |
|
263 |
+
| 0.2655 | 5050 | 0.0005 | - |
|
264 |
+
| 0.2681 | 5100 | 0.0031 | - |
|
265 |
+
| 0.2708 | 5150 | 0.0002 | - |
|
266 |
+
| 0.2734 | 5200 | 0.002 | - |
|
267 |
+
| 0.2760 | 5250 | 0.0111 | - |
|
268 |
+
| 0.2786 | 5300 | 0.0286 | - |
|
269 |
+
| 0.2813 | 5350 | 0.0009 | - |
|
270 |
+
| 0.2839 | 5400 | 0.0023 | - |
|
271 |
+
| 0.2865 | 5450 | 0.0079 | - |
|
272 |
+
| 0.2892 | 5500 | 0.0691 | - |
|
273 |
+
| 0.2918 | 5550 | 0.0403 | - |
|
274 |
+
| 0.2944 | 5600 | 0.0002 | - |
|
275 |
+
| 0.2970 | 5650 | 0.0057 | - |
|
276 |
+
| 0.2997 | 5700 | 0.0047 | - |
|
277 |
+
| 0.3023 | 5750 | 0.0322 | - |
|
278 |
+
| 0.3049 | 5800 | 0.0097 | - |
|
279 |
+
| 0.3076 | 5850 | 0.0012 | - |
|
280 |
+
| 0.3102 | 5900 | 0.0047 | - |
|
281 |
+
| 0.3128 | 5950 | 0.0925 | - |
|
282 |
+
| 0.3154 | 6000 | 0.0562 | - |
|
283 |
+
| 0.3181 | 6050 | 0.0058 | - |
|
284 |
+
| 0.3207 | 6100 | 0.0001 | - |
|
285 |
+
| 0.3233 | 6150 | 0.0029 | - |
|
286 |
+
| 0.3260 | 6200 | 0.0001 | - |
|
287 |
+
| 0.3286 | 6250 | 0.0035 | - |
|
288 |
+
| 0.3312 | 6300 | 0.0013 | - |
|
289 |
+
| 0.3338 | 6350 | 0.0152 | - |
|
290 |
+
| 0.3365 | 6400 | 0.0004 | - |
|
291 |
+
| 0.3391 | 6450 | 0.0114 | - |
|
292 |
+
| 0.3417 | 6500 | 0.0906 | - |
|
293 |
+
| 0.3444 | 6550 | 0.0005 | - |
|
294 |
+
| 0.3470 | 6600 | 0.0028 | - |
|
295 |
+
| 0.3496 | 6650 | 0.0395 | - |
|
296 |
+
| 0.3522 | 6700 | 0.0001 | - |
|
297 |
+
| 0.3549 | 6750 | 0.0044 | - |
|
298 |
+
| 0.3575 | 6800 | 0.0121 | - |
|
299 |
+
| 0.3601 | 6850 | 0.0012 | - |
|
300 |
+
| 0.3628 | 6900 | 0.0193 | - |
|
301 |
+
| 0.3654 | 6950 | 0.0014 | - |
|
302 |
+
| 0.3680 | 7000 | 0.0001 | - |
|
303 |
+
| 0.3706 | 7050 | 0.0618 | - |
|
304 |
+
| 0.3733 | 7100 | 0.0066 | - |
|
305 |
+
| 0.3759 | 7150 | 0.0426 | - |
|
306 |
+
| 0.3785 | 7200 | 0.0281 | - |
|
307 |
+
| 0.3812 | 7250 | 0.0254 | - |
|
308 |
+
| 0.3838 | 7300 | 0.0008 | - |
|
309 |
+
| 0.3864 | 7350 | 0.0047 | - |
|
310 |
+
| 0.3890 | 7400 | 0.0088 | - |
|
311 |
+
| 0.3917 | 7450 | 0.0004 | - |
|
312 |
+
| 0.3943 | 7500 | 0.0054 | - |
|
313 |
+
| 0.3969 | 7550 | 0.0371 | - |
|
314 |
+
| 0.3996 | 7600 | 0.0001 | - |
|
315 |
+
| 0.4022 | 7650 | 0.0082 | - |
|
316 |
+
| 0.4048 | 7700 | 0.0162 | - |
|
317 |
+
| 0.4074 | 7750 | 0.0093 | - |
|
318 |
+
| 0.4101 | 7800 | 0.0115 | - |
|
319 |
+
| 0.4127 | 7850 | 0.0114 | - |
|
320 |
+
| 0.4153 | 7900 | 0.0001 | - |
|
321 |
+
| 0.4180 | 7950 | 0.0002 | - |
|
322 |
+
| 0.4206 | 8000 | 0.0098 | - |
|
323 |
+
| 0.4232 | 8050 | 0.0001 | - |
|
324 |
+
| 0.4258 | 8100 | 0.0 | - |
|
325 |
+
| 0.4285 | 8150 | 0.0104 | - |
|
326 |
+
| 0.4311 | 8200 | 0.0564 | - |
|
327 |
+
| 0.4337 | 8250 | 0.0002 | - |
|
328 |
+
| 0.4364 | 8300 | 0.0176 | - |
|
329 |
+
| 0.4390 | 8350 | 0.0109 | - |
|
330 |
+
| 0.4416 | 8400 | 0.0001 | - |
|
331 |
+
| 0.4442 | 8450 | 0.0053 | - |
|
332 |
+
| 0.4469 | 8500 | 0.0629 | - |
|
333 |
+
| 0.4495 | 8550 | 0.0324 | - |
|
334 |
+
| 0.4521 | 8600 | 0.0003 | - |
|
335 |
+
| 0.4548 | 8650 | 0.0025 | - |
|
336 |
+
| 0.4574 | 8700 | 0.0032 | - |
|
337 |
+
| 0.4600 | 8750 | 0.0002 | - |
|
338 |
+
| 0.4626 | 8800 | 0.0001 | - |
|
339 |
+
| 0.4653 | 8850 | 0.0475 | - |
|
340 |
+
| 0.4679 | 8900 | 0.0114 | - |
|
341 |
+
| 0.4705 | 8950 | 0.0001 | - |
|
342 |
+
| 0.4732 | 9000 | 0.0028 | - |
|
343 |
+
| 0.4758 | 9050 | 0.0001 | - |
|
344 |
+
| 0.4784 | 9100 | 0.0002 | - |
|
345 |
+
| 0.4810 | 9150 | 0.0001 | - |
|
346 |
+
| 0.4837 | 9200 | 0.0001 | - |
|
347 |
+
| 0.4863 | 9250 | 0.0021 | - |
|
348 |
+
| 0.4889 | 9300 | 0.0001 | - |
|
349 |
+
| 0.4916 | 9350 | 0.0014 | - |
|
350 |
+
| 0.4942 | 9400 | 0.0176 | - |
|
351 |
+
| 0.4968 | 9450 | 0.0005 | - |
|
352 |
+
| 0.4994 | 9500 | 0.0001 | - |
|
353 |
+
| 0.5021 | 9550 | 0.0314 | - |
|
354 |
+
| 0.5047 | 9600 | 0.0613 | - |
|
355 |
+
| 0.5073 | 9650 | 0.018 | - |
|
356 |
+
| 0.5100 | 9700 | 0.0 | - |
|
357 |
+
| 0.5126 | 9750 | 0.0023 | - |
|
358 |
+
| 0.5152 | 9800 | 0.0013 | - |
|
359 |
+
| 0.5178 | 9850 | 0.0001 | - |
|
360 |
+
| 0.5205 | 9900 | 0.0003 | - |
|
361 |
+
| 0.5231 | 9950 | 0.001 | - |
|
362 |
+
| 0.5257 | 10000 | 0.0001 | - |
|
363 |
+
| 0.5284 | 10050 | 0.0193 | - |
|
364 |
+
| 0.5310 | 10100 | 0.0051 | - |
|
365 |
+
| 0.5336 | 10150 | 0.0001 | - |
|
366 |
+
| 0.5362 | 10200 | 0.0005 | - |
|
367 |
+
| 0.5389 | 10250 | 0.0 | - |
|
368 |
+
| 0.5415 | 10300 | 0.0001 | - |
|
369 |
+
| 0.5441 | 10350 | 0.0001 | - |
|
370 |
+
| 0.5468 | 10400 | 0.0037 | - |
|
371 |
+
| 0.5494 | 10450 | 0.0309 | - |
|
372 |
+
| 0.5520 | 10500 | 0.0286 | - |
|
373 |
+
| 0.5547 | 10550 | 0.0 | - |
|
374 |
+
| 0.5573 | 10600 | 0.0155 | - |
|
375 |
+
| 0.5599 | 10650 | 0.0001 | - |
|
376 |
+
| 0.5625 | 10700 | 0.0077 | - |
|
377 |
+
| 0.5652 | 10750 | 0.0153 | - |
|
378 |
+
| 0.5678 | 10800 | 0.0042 | - |
|
379 |
+
| 0.5704 | 10850 | 0.0103 | - |
|
380 |
+
| 0.5731 | 10900 | 0.0097 | - |
|
381 |
+
| 0.5757 | 10950 | 0.0109 | - |
|
382 |
+
| 0.5783 | 11000 | 0.0001 | - |
|
383 |
+
| 0.5809 | 11050 | 0.0103 | - |
|
384 |
+
| 0.5836 | 11100 | 0.0024 | - |
|
385 |
+
| 0.5862 | 11150 | 0.0001 | - |
|
386 |
+
| 0.5888 | 11200 | 0.0487 | - |
|
387 |
+
| 0.5915 | 11250 | 0.0009 | - |
|
388 |
+
| 0.5941 | 11300 | 0.0001 | - |
|
389 |
+
| 0.5967 | 11350 | 0.0002 | - |
|
390 |
+
| 0.5993 | 11400 | 0.0035 | - |
|
391 |
+
| 0.6020 | 11450 | 0.0005 | - |
|
392 |
+
| 0.6046 | 11500 | 0.0001 | - |
|
393 |
+
| 0.6072 | 11550 | 0.0049 | - |
|
394 |
+
| 0.6099 | 11600 | 0.0396 | - |
|
395 |
+
| 0.6125 | 11650 | 0.0177 | - |
|
396 |
+
| 0.6151 | 11700 | 0.0071 | - |
|
397 |
+
| 0.6177 | 11750 | 0.0071 | - |
|
398 |
+
| 0.6204 | 11800 | 0.0111 | - |
|
399 |
+
| 0.6230 | 11850 | 0.0145 | - |
|
400 |
+
| 0.6256 | 11900 | 0.037 | - |
|
401 |
+
| 0.6283 | 11950 | 0.0046 | - |
|
402 |
+
| 0.6309 | 12000 | 0.0258 | - |
|
403 |
+
| 0.6335 | 12050 | 0.0002 | - |
|
404 |
+
| 0.6361 | 12100 | 0.002 | - |
|
405 |
+
| 0.6388 | 12150 | 0.0119 | - |
|
406 |
+
| 0.6414 | 12200 | 0.0079 | - |
|
407 |
+
| 0.6440 | 12250 | 0.0239 | - |
|
408 |
+
| 0.6467 | 12300 | 0.0037 | - |
|
409 |
+
| 0.6493 | 12350 | 0.0366 | - |
|
410 |
+
| 0.6519 | 12400 | 0.0201 | - |
|
411 |
+
| 0.6545 | 12450 | 0.002 | - |
|
412 |
+
| 0.6572 | 12500 | 0.0652 | - |
|
413 |
+
| 0.6598 | 12550 | 0.005 | - |
|
414 |
+
| 0.6624 | 12600 | 0.0034 | - |
|
415 |
+
| 0.6651 | 12650 | 0.0003 | - |
|
416 |
+
| 0.6677 | 12700 | 0.0022 | - |
|
417 |
+
| 0.6703 | 12750 | 0.0001 | - |
|
418 |
+
| 0.6729 | 12800 | 0.0175 | - |
|
419 |
+
| 0.6756 | 12850 | 0.0003 | - |
|
420 |
+
| 0.6782 | 12900 | 0.0085 | - |
|
421 |
+
| 0.6808 | 12950 | 0.0036 | - |
|
422 |
+
| 0.6835 | 13000 | 0.0 | - |
|
423 |
+
| 0.6861 | 13050 | 0.0097 | - |
|
424 |
+
| 0.6887 | 13100 | 0.006 | - |
|
425 |
+
| 0.6913 | 13150 | 0.0001 | - |
|
426 |
+
| 0.6940 | 13200 | 0.0001 | - |
|
427 |
+
| 0.6966 | 13250 | 0.0379 | - |
|
428 |
+
| 0.6992 | 13300 | 0.0076 | - |
|
429 |
+
| 0.7019 | 13350 | 0.0627 | - |
|
430 |
+
| 0.7045 | 13400 | 0.0605 | - |
|
431 |
+
| 0.7071 | 13450 | 0.0081 | - |
|
432 |
+
| 0.7097 | 13500 | 0.0018 | - |
|
433 |
+
| 0.7124 | 13550 | 0.018 | - |
|
434 |
+
| 0.7150 | 13600 | 0.0035 | - |
|
435 |
+
| 0.7176 | 13650 | 0.0001 | - |
|
436 |
+
| 0.7203 | 13700 | 0.0001 | - |
|
437 |
+
| 0.7229 | 13750 | 0.0507 | - |
|
438 |
+
| 0.7255 | 13800 | 0.0082 | - |
|
439 |
+
| 0.7281 | 13850 | 0.0082 | - |
|
440 |
+
| 0.7308 | 13900 | 0.0106 | - |
|
441 |
+
| 0.7334 | 13950 | 0.0067 | - |
|
442 |
+
| 0.7360 | 14000 | 0.0062 | - |
|
443 |
+
| 0.7387 | 14050 | 0.0001 | - |
|
444 |
+
| 0.7413 | 14100 | 0.0246 | - |
|
445 |
+
| 0.7439 | 14150 | 0.0033 | - |
|
446 |
+
| 0.7465 | 14200 | 0.0001 | - |
|
447 |
+
| 0.7492 | 14250 | 0.0432 | - |
|
448 |
+
| 0.7518 | 14300 | 0.0502 | - |
|
449 |
+
| 0.7544 | 14350 | 0.0079 | - |
|
450 |
+
| 0.7571 | 14400 | 0.0291 | - |
|
451 |
+
| 0.7597 | 14450 | 0.0002 | - |
|
452 |
+
| 0.7623 | 14500 | 0.0029 | - |
|
453 |
+
| 0.7649 | 14550 | 0.0321 | - |
|
454 |
+
| 0.7676 | 14600 | 0.0002 | - |
|
455 |
+
| 0.7702 | 14650 | 0.0053 | - |
|
456 |
+
| 0.7728 | 14700 | 0.0094 | - |
|
457 |
+
| 0.7755 | 14750 | 0.0156 | - |
|
458 |
+
| 0.7781 | 14800 | 0.071 | - |
|
459 |
+
| 0.7807 | 14850 | 0.0001 | - |
|
460 |
+
| 0.7833 | 14900 | 0.0037 | - |
|
461 |
+
| 0.7860 | 14950 | 0.0544 | - |
|
462 |
+
| 0.7886 | 15000 | 0.0034 | - |
|
463 |
+
| 0.7912 | 15050 | 0.0018 | - |
|
464 |
+
| 0.7939 | 15100 | 0.0014 | - |
|
465 |
+
| 0.7965 | 15150 | 0.0189 | - |
|
466 |
+
| 0.7991 | 15200 | 0.0001 | - |
|
467 |
+
| 0.8017 | 15250 | 0.0057 | - |
|
468 |
+
| 0.8044 | 15300 | 0.0001 | - |
|
469 |
+
| 0.8070 | 15350 | 0.0002 | - |
|
470 |
+
| 0.8096 | 15400 | 0.0003 | - |
|
471 |
+
| 0.8123 | 15450 | 0.0006 | - |
|
472 |
+
| 0.8149 | 15500 | 0.1085 | - |
|
473 |
+
| 0.8175 | 15550 | 0.0003 | - |
|
474 |
+
| 0.8201 | 15600 | 0.0001 | - |
|
475 |
+
| 0.8228 | 15650 | 0.0005 | - |
|
476 |
+
| 0.8254 | 15700 | 0.014 | - |
|
477 |
+
| 0.8280 | 15750 | 0.0036 | - |
|
478 |
+
| 0.8307 | 15800 | 0.0001 | - |
|
479 |
+
| 0.8333 | 15850 | 0.0 | - |
|
480 |
+
| 0.8359 | 15900 | 0.0 | - |
|
481 |
+
| 0.8385 | 15950 | 0.0001 | - |
|
482 |
+
| 0.8412 | 16000 | 0.0001 | - |
|
483 |
+
| 0.8438 | 16050 | 0.0271 | - |
|
484 |
+
| 0.8464 | 16100 | 0.0093 | - |
|
485 |
+
| 0.8491 | 16150 | 0.0444 | - |
|
486 |
+
| 0.8517 | 16200 | 0.0002 | - |
|
487 |
+
| 0.8543 | 16250 | 0.0007 | - |
|
488 |
+
| 0.8569 | 16300 | 0.0002 | - |
|
489 |
+
| 0.8596 | 16350 | 0.0012 | - |
|
490 |
+
| 0.8622 | 16400 | 0.0 | - |
|
491 |
+
| 0.8648 | 16450 | 0.0177 | - |
|
492 |
+
| 0.8675 | 16500 | 0.0342 | - |
|
493 |
+
| 0.8701 | 16550 | 0.0288 | - |
|
494 |
+
| 0.8727 | 16600 | 0.0 | - |
|
495 |
+
| 0.8753 | 16650 | 0.0024 | - |
|
496 |
+
| 0.8780 | 16700 | 0.0003 | - |
|
497 |
+
| 0.8806 | 16750 | 0.0063 | - |
|
498 |
+
| 0.8832 | 16800 | 0.0442 | - |
|
499 |
+
| 0.8859 | 16850 | 0.0092 | - |
|
500 |
+
| 0.8885 | 16900 | 0.0089 | - |
|
501 |
+
| 0.8911 | 16950 | 0.0027 | - |
|
502 |
+
| 0.8937 | 17000 | 0.0521 | - |
|
503 |
+
| 0.8964 | 17050 | 0.0023 | - |
|
504 |
+
| 0.8990 | 17100 | 0.051 | - |
|
505 |
+
| 0.9016 | 17150 | 0.0015 | - |
|
506 |
+
| 0.9043 | 17200 | 0.0003 | - |
|
507 |
+
| 0.9069 | 17250 | 0.0177 | - |
|
508 |
+
| 0.9095 | 17300 | 0.0031 | - |
|
509 |
+
| 0.9121 | 17350 | 0.0205 | - |
|
510 |
+
| 0.9148 | 17400 | 0.0172 | - |
|
511 |
+
| 0.9174 | 17450 | 0.0001 | - |
|
512 |
+
| 0.9200 | 17500 | 0.005 | - |
|
513 |
+
| 0.9227 | 17550 | 0.0409 | - |
|
514 |
+
| 0.9253 | 17600 | 0.0001 | - |
|
515 |
+
| 0.9279 | 17650 | 0.0 | - |
|
516 |
+
| 0.9306 | 17700 | 0.0002 | - |
|
517 |
+
| 0.9332 | 17750 | 0.0274 | - |
|
518 |
+
| 0.9358 | 17800 | 0.0077 | - |
|
519 |
+
| 0.9384 | 17850 | 0.0078 | - |
|
520 |
+
| 0.9411 | 17900 | 0.0001 | - |
|
521 |
+
| 0.9437 | 17950 | 0.0 | - |
|
522 |
+
| 0.9463 | 18000 | 0.0437 | - |
|
523 |
+
| 0.9490 | 18050 | 0.0143 | - |
|
524 |
+
| 0.9516 | 18100 | 0.001 | - |
|
525 |
+
| 0.9542 | 18150 | 0.0001 | - |
|
526 |
+
| 0.9568 | 18200 | 0.0428 | - |
|
527 |
+
| 0.9595 | 18250 | 0.0036 | - |
|
528 |
+
| 0.9621 | 18300 | 0.0001 | - |
|
529 |
+
| 0.9647 | 18350 | 0.0001 | - |
|
530 |
+
| 0.9674 | 18400 | 0.0063 | - |
|
531 |
+
| 0.9700 | 18450 | 0.0 | - |
|
532 |
+
| 0.9726 | 18500 | 0.0196 | - |
|
533 |
+
| 0.9752 | 18550 | 0.0001 | - |
|
534 |
+
| 0.9779 | 18600 | 0.0001 | - |
|
535 |
+
| 0.9805 | 18650 | 0.0001 | - |
|
536 |
+
| 0.9831 | 18700 | 0.0397 | - |
|
537 |
+
| 0.9858 | 18750 | 0.008 | - |
|
538 |
+
| 0.9884 | 18800 | 0.015 | - |
|
539 |
+
| 0.9910 | 18850 | 0.0 | - |
|
540 |
+
| 0.9936 | 18900 | 0.003 | - |
|
541 |
+
| 0.9963 | 18950 | 0.025 | - |
|
542 |
+
| 0.9989 | 19000 | 0.003 | - |
|
543 |
+
| **1.0** | **19021** | **-** | **0.2343** |
|
544 |
+
|
545 |
+
* The bold row denotes the saved checkpoint.
|
546 |
+
### Framework Versions
|
547 |
+
- Python: 3.10.12
|
548 |
+
- SetFit: 1.0.3
|
549 |
+
- Sentence Transformers: 2.4.0
|
550 |
+
- Transformers: 4.38.1
|
551 |
+
- PyTorch: 2.1.0+cu118
|
552 |
+
- Datasets: 2.17.1
|
553 |
+
- Tokenizers: 0.15.2
|
554 |
+
|
555 |
+
## Citation
|
556 |
+
|
557 |
+
### BibTeX
|
558 |
+
```bibtex
|
559 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
560 |
+
doi = {10.48550/ARXIV.2209.11055},
|
561 |
+
url = {https://arxiv.org/abs/2209.11055},
|
562 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
563 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
564 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
565 |
+
publisher = {arXiv},
|
566 |
+
year = {2022},
|
567 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
568 |
+
}
|
569 |
+
```
|
570 |
+
|
571 |
+
<!--
|
572 |
+
## Glossary
|
573 |
+
|
574 |
+
*Clearly define terms in order to be accessible across audiences.*
|
575 |
+
-->
|
576 |
+
|
577 |
+
<!--
|
578 |
+
## Model Card Authors
|
579 |
+
|
580 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
581 |
+
-->
|
582 |
+
|
583 |
+
<!--
|
584 |
+
## Model Card Contact
|
585 |
+
|
586 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
587 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "old_models/paraphrase-multilingual-mpnet-base-v2/0_Transformer",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"transformers_version": "4.7.0",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 250002
|
27 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null
|
9 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"buying",
|
5 |
+
"company name",
|
6 |
+
"invoice",
|
7 |
+
"random characters",
|
8 |
+
"refund",
|
9 |
+
"rent",
|
10 |
+
"salary"
|
11 |
+
]
|
12 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b32022e56458b01fe48ccd4a8058c9c677eb4fa7beedf6225b6a6eeeec8e3cc8
|
3 |
+
size 1112197096
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd95d8c5bc1ac42505bc3870f69356f2bf9c44134449433cc465349a62d74bf2
|
3 |
+
size 44373
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa685fc160bbdbab64058d4fc91b60e62d207e8dc60b9af5c002c5ab946ded00
|
3 |
+
size 17083009
|
tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"stride": 0,
|
57 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
58 |
+
"truncation_side": "right",
|
59 |
+
"truncation_strategy": "longest_first",
|
60 |
+
"unk_token": "<unk>"
|
61 |
+
}
|