Upload PPO LunarLander-v2 model
Browse files- .gitattributes +1 -0
- README.md +18 -38
- config.json +1 -0
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +8 -0
- replay.mp4 +3 -0
- results.json +1 -1
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,57 +1,37 @@
|
|
| 1 |
---
|
|
|
|
| 2 |
tags:
|
| 3 |
- LunarLander-v2
|
| 4 |
-
-
|
| 5 |
-
-
|
|
|
|
| 6 |
model-index:
|
| 7 |
- name: PPO
|
| 8 |
results:
|
| 9 |
-
-
|
| 10 |
-
- type: mean_reward
|
| 11 |
-
value: 116.62 +/- 109.65
|
| 12 |
-
name: mean_reward
|
| 13 |
-
task:
|
| 14 |
type: reinforcement-learning
|
| 15 |
name: reinforcement-learning
|
| 16 |
dataset:
|
| 17 |
name: LunarLander-v2
|
| 18 |
type: LunarLander-v2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
---
|
| 20 |
|
| 21 |
# **PPO** Agent playing **LunarLander-v2**
|
| 22 |
-
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 23 |
-
|
| 24 |
-
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
|
| 25 |
-
|
| 26 |
-
## Usage (with SB3 RL Zoo)
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
| 31 |
|
| 32 |
-
```
|
| 33 |
-
# Download model and save it into the logs/ folder
|
| 34 |
-
python -m rl_zoo3.load_from_hub --algo ppo --env LunarLander-v2 -orga luijait -f logs/
|
| 35 |
-
python enjoy.py --algo ppo --env LunarLander-v2 -f logs/
|
| 36 |
-
```
|
| 37 |
-
|
| 38 |
-
## Training (with the RL Zoo)
|
| 39 |
-
```
|
| 40 |
-
python train.py --algo ppo --env LunarLander-v2 -f logs/
|
| 41 |
-
# Upload the model and generate video (when possible)
|
| 42 |
-
python -m rl_zoo3.push_to_hub --algo ppo --env LunarLander-v2 -f logs/ -orga luijait
|
| 43 |
-
```
|
| 44 |
|
| 45 |
-
## Hyperparameters
|
| 46 |
```python
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
('learning_rate', 0.00025),
|
| 52 |
-
('n_epochs', 4),
|
| 53 |
-
('n_steps', 1024),
|
| 54 |
-
('n_timesteps', 500000),
|
| 55 |
-
('normalize', False),
|
| 56 |
-
('policy', 'MlpPolicy')])
|
| 57 |
```
|
|
|
|
| 1 |
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
tags:
|
| 4 |
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
model-index:
|
| 9 |
- name: PPO
|
| 10 |
results:
|
| 11 |
+
- task:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
type: reinforcement-learning
|
| 13 |
name: reinforcement-learning
|
| 14 |
dataset:
|
| 15 |
name: LunarLander-v2
|
| 16 |
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: -1070.34 +/- 1311.70
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
---
|
| 23 |
|
| 24 |
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
|
|
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
|
|
|
| 32 |
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x111ef7100>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x111ef71a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x111ef7240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x111ef72e0>", "_build": "<function ActorCriticPolicy._build at 0x111ef7380>", "forward": "<function ActorCriticPolicy.forward at 0x111ef7420>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x111ef74c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x111ef7560>", "_predict": "<function ActorCriticPolicy._predict at 0x111ef7600>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x111ef76a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x111ef7740>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x111ef77e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x111eee740>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 10048, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1753041271084144000, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlgAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAADmswC+llPuPzIs+L5DxhM/zOK7PoEaHD4AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0047999999999999154, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVSgsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEAhMB6rvLKMAWyUS1qMAXSURz/jVXvH93r2dX2UKGgGR8Bcmfs/pt78aAdLYmgIRz/kLFOwgTysdX2UKGgGR8BYTbcTJyQxaAdLUWgIRz/lMjeKsMiKdX2UKGgGR8BliXI8yN4raAdLS2gIRz/l23Sa3I+4dX2UKGgGR8BbSNEsrd30aAdLQ2gIRz/mfB3zMA3ldX2UKGgGR8BfMuPzWf9QaAdLPmgIRz/nEYfnwG4adX2UKGgGR8BwOPlbNbC8aAdLcGgIRz/oO32EkB0ZdX2UKGgGR8B4hwlIEr5JaAdLZGgIRz/pBkZrHlwMdX2UKGgGR8BRI/GyX2M9aAdLTmgIRz/psMI/qxC6dX2UKGgGR8Bp0pFb3XZoaAdLWmgIRz/qvbfxc3VDdX2UKGgGR8B2h5Jg9eQdaAdLWmgIRz/reyzHCGeudX2UKGgGR8BT4liay8jBaAdLS2gIRz/sKw6hg3LndX2UKGgGR8Byz0qur6tUaAdLY2gIRz/tRnnMdLg5dX2UKGgGR8BdusCT2WY4aAdLO2gIRz/t2Nm16Vt5dX2UKGgGR8BwaPVsk6cRaAdLWWgIRz/unG0eEIw/dX2UKGgGR8B0bO/pMYdiaAdLTmgIRz/vT6rNnoPkdX2UKGgGR8Brs+nl4keIaAdLSmgIRz/wJ4jbBXS0dX2UKGgGR8BZgwqiGnGbaAdLa2gIRz/wlAAyVObidX2UKGgGR8Bn+BOi35N5aAdLQ2gIRz/w5TAFgUlBdX2UKGgGR8B1xcDklu3uaAdLaGgIRz/xc1O0svqUdX2UKGgGR8BUL5lFtsN2aAdLPmgIRz/xv5gw482adX2UKGgGR8BaCKKLsKLLaAdLWGgIRz/yHw9aEBbOdX2UKGgGR8CBOlXgccU/aAdLfGgIRz/yvH5rP+n7dX2UKGgGR8Bwt+Jgssg/aAdLbmgIRz/zUvK2a2F4dX2UKGgGR8BgJsHyEtdzaAdLXWgIRz/ztD2Jzkp7dX2UKGgGR8BV66h11W8zaAdLRWgIRz/0LeyiVSn+dX2UKGgGR8BePSZBsyi3aAdLamgIRz/0leBxxT86dX2UKGgGR8BRVFGPPszEaAdLWWgIRz/1HizcAR02dX2UKGgGR8BrEEMLF4s3aAdLaWgIRz/1iHM2WIGhdX2UKGgGR8Bxcr+qBEroaAdLZGgIRz/2Gl/H5rP/dX2UKGgGR8Bxd4UxmCiAaAdLe2gIRz/2wmzByjpLdX2UKGgGR8BTtjSCvovBaAdLhGgIRz/3bBTGYKIBdX2UKGgGR8BmJDdznzQNaAdLemgIRz/4DgIhQm/ndX2UKGgGR8BqcSwOe8PGaAdLeGgIRz/4rQLNOdoWdX2UKGgGR8BfI7a7EpAlaAdLPWgIRz/40OZssQNDdX2UKGgGR8BWk6hxo7FLaAdLUGgIRz/5UpmVZ9uxdX2UKGgGR8B4ad9Wp6yCaAdLbmgIRz/5wnMMZxaQdX2UKGgGR8Bwytlar3j/aAdLV2gIRz/6TzI3irDJdX2UKGgGR8B+d/FglWwNaAdLnWgIRz/7FKTSsr/bdX2UKGgGR8CAI/xvNu+AaAdLWmgIRz/7n7HhjvuxdX2UKGgGR8B58uOdXko4aAdLkWgIRz/8V5fMOf/WdX2UKGgGR8B4sgFnqVyFaAdLUGgIRz/8tDQZ4wAVdX2UKGgGR8B/tTH1e0HAaAdLd2gIRz/9Vq33Hq/udX2UKGgGR8Brm2cUdq+KaAdLWWgIRz/9uuJUHY6GdX2UKGgGR8B4p/YZl4C7aAdLa2gIRz/+U8zQ/oq1dX2UKGgGR8Bx3eJP69CeaAdLaWgIRz/+7FKkEcKgdX2UKGgGR8B0hGi7CiyqaAdLW2gIRz//UOuq3mV8dX2UKGgGR8BYQoAfdRBNaAdLVGgIRz//tWhh6SkkdX2UKGgGR8B4AGFev6j4aAdLVmgIR0AAHtx+8XendX2UKGgGR8CAhB/RVp9JaAdLfGgIR0AAcxubZvkzdX2UKGgGR8B26ErlNlAeaAdLW2gIR0AApokAxSHedX2UKGgGR8CCklB1s+FDaAdLf2gIR0AA+rKeTV2BdX2UKGgGR8B3CSJO32EkaAdLW2gIR0ABQmVqveP8dX2UKGgGR8Bxvi4gA6uGaAdLXGgIR0ABdVzZHuqndX2UKGgGR8BzhEORT0g9aAdLdmgIR0ABx9JBgNPQdX2UKGgGR8B4uao60Y0maAdLVGgIR0AB+FtbcGkfdX2UKGgGR8B93lzq8lHCaAdLbWgIR0ACRkqc3EQ5dX2UKGgGR8B4AMQd0aIfaAdLXWgIR0ACeDSPU8V6dX2UKGgGR8B7vYdZJTVEaAdLcmgIR0ACyWX1J17qdX2UKGgGR8BzyKJzkp7UaAdLX2gIR0ADEbBGhEjPdX2UKGgGR8B9mvA1vVEvaAdLdGgIR0ADTcdo371qdX2UKGgGR8B6WAKohpxnaAdLWmgIR0ADk+/xlQMydX2UKGgGR8CAXR/YJ3PiaAdLi2gIR0AD8iGFi8WcdX2UKGgGR8B6wo78vVVhaAdLiWgIR0AESjk+5e7ddX2UKGgGR8BOcPNVzZHvaAdLkmgIR0AEp/I8yN4rdX2UKGgGR8B67ooy9EkTaAdLh2gIR0AFHDP4VRDUdX2UKGgGR8BuLPGIbfgraAdLo2gIR0AFg/u9eyAydX2UKGgGR8B5Sh44ZMtcaAdLTWgIR0AFsEV32VVxdX2UKGgGR8CFXKI/qxC6aAdLfmgIR0AGA97ngYP5dX2UKGgGR8B83pnIyTIOaAdLb2gIR0AGVKXfIjnndX2UKGgGR8B9K9r56+nJaAdLYmgIR0AGnVAiV0LddX2UKGgGR8BEJldC3PRiaAdLUGgIR0AGzGkvboKVdX2UKGgGR8Bf7HR9gF5faAdLcWgIR0AHGpEQXhwVdX2UKGgGR8B8/ZVinYQKaAdLZWgIR0AHUBKcurZKdX2UKGgGR8B5muuIRAbAaAdLgGgIR0AHpaLXL/0edX2UKGgGR8CHp8g8KXv6aAdLk2gIR0AIAv38GcFydX2UKGgGR8B83902cawVaAdLe2gIR0AIWrQw9JSSdX2UKGgGR8CFFsFVT72taAdLsmgIR0AI3d69kBjndX2UKGgGR8CCcqgOBlMAaAdLhGgIR0AJNMmF8G9pdX2UKGgGR8CA7uWGATZhaAdLbGgIR0AJf5P/JeVtdX2UKGgGR8B7ckPnSv1UaAdLWmgIR0AJsMb3oLXudX2UKGgGR8B7No/dIoVmaAdLVWgIR0AJ9S4vvjOtdX2UKGgGR8CGh2I1LrX2aAdLm2gIR0AKVBfKISDidX2UKGgGR8CCVqw35vcaaAdLbGgIR0AKofhddE9ddX2UKGgGR8CD/2hdMTN/aAdLgWgIR0AK9fzBhx5tdX2UKGgGR8CAvJFKkEcLaAdLXWgIR0ALKRwIdELIdX2UKGgGR8BvK3s/pt78aAdLYWgIR0ALc6ij+JgtdX2UKGgGR8CF4sZof0VaaAdLm2gIR0AL2EkB0ZFYdX2UKGgGR8B4oapfhMrVaAdLXmgIR0AMILThHbypdX2UKGgGR8CCvntpmEoOaAdLhmgIR0AMehK15Sm7dX2UKGgGR8CGzL3dsSCfaAdLhmgIR0AM0Cih37k5dX2UKGgGR8CET+dKdxyXaAdLcGgIR0ANHd0q6OHWdX2UKGgGR8CFmfvH93r2aAdLgGgIR0ANcsH0K7ZndX2UKGgGR8BwWTyPMjeLaAdLd2gIR0ANs7r9l2/0dX2UKGgGR8B3L2kadc0MaAdLZGgIR0AN/1anrIHUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1570, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAwL8AAMC/AACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAAMA/AADAPwAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxTWy0xLjUgICAgICAgLTEuNSAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0wLiAgICAgICAgLTAuICAgICAgIF2UjAloaWdoX3JlcHKUjEtbMS41ICAgICAgIDEuNSAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMS4KIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 64, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVBAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGAvVXNlcnMvbHVpamFpdC9kZWVwcmwtY291cnNlL3ZlbnYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLg0MI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxgL1VzZXJzL2x1aWphaXQvZGVlcHJsLWNvdXJzZS92ZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVBAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGAvVXNlcnMvbHVpamFpdC9kZWVwcmwtY291cnNlL3ZlbnYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLg0MI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxgL1VzZXJzL2x1aWphaXQvZGVlcHJsLWNvdXJzZS92ZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "macOS-16.0-arm64-arm-64bit Darwin Kernel Version 25.0.0: Tue Jun 17 00:08:06 PDT 2025; root:xnu-12377.0.122.0.1~120/RELEASE_ARM64_T6041", "Python": "3.12.7", "Stable-Baselines3": "2.1.0", "PyTorch": "2.7.1", "GPU Enabled": "False", "Numpy": "2.3.1", "Cloudpickle": "3.1.1", "Gymnasium": "0.29.1"}}
|
ppo-LunarLander-v2.zip
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:892b1aecc14eec0589fdb6c3d98923ccb551e20ccee3140c27ef026c913a82c8
|
| 3 |
+
size 147793
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.1.0
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x111ef7100>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x111ef71a0>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x111ef7240>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x111ef72e0>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x111ef7380>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x111ef7420>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x111ef74c0>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x111ef7560>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x111ef7600>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x111ef76a0>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x111ef7740>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x111ef77e0>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x111eee740>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 0,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 10048,
|
| 25 |
+
"_total_timesteps": 10000,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1753041271084144000,
|
| 30 |
+
"learning_rate": 0.0003,
|
| 31 |
+
"tensorboard_log": null,
|
| 32 |
+
"_last_obs": {
|
| 33 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVlgAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAADmswC+llPuPzIs+L5DxhM/zOK7PoEaHD4AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsIhpSMAUOUdJRSlC4="
|
| 35 |
+
},
|
| 36 |
+
"_last_episode_starts": {
|
| 37 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 38 |
+
":serialized:": "gAWVdQAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="
|
| 39 |
+
},
|
| 40 |
+
"_last_original_obs": null,
|
| 41 |
+
"_episode_num": 0,
|
| 42 |
+
"use_sde": false,
|
| 43 |
+
"sde_sample_freq": -1,
|
| 44 |
+
"_current_progress_remaining": -0.0047999999999999154,
|
| 45 |
+
"_stats_window_size": 100,
|
| 46 |
+
"ep_info_buffer": {
|
| 47 |
+
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWVSgsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEAhMB6rvLKMAWyUS1qMAXSURz/jVXvH93r2dX2UKGgGR8Bcmfs/pt78aAdLYmgIRz/kLFOwgTysdX2UKGgGR8BYTbcTJyQxaAdLUWgIRz/lMjeKsMiKdX2UKGgGR8BliXI8yN4raAdLS2gIRz/l23Sa3I+4dX2UKGgGR8BbSNEsrd30aAdLQ2gIRz/mfB3zMA3ldX2UKGgGR8BfMuPzWf9QaAdLPmgIRz/nEYfnwG4adX2UKGgGR8BwOPlbNbC8aAdLcGgIRz/oO32EkB0ZdX2UKGgGR8B4hwlIEr5JaAdLZGgIRz/pBkZrHlwMdX2UKGgGR8BRI/GyX2M9aAdLTmgIRz/psMI/qxC6dX2UKGgGR8Bp0pFb3XZoaAdLWmgIRz/qvbfxc3VDdX2UKGgGR8B2h5Jg9eQdaAdLWmgIRz/reyzHCGeudX2UKGgGR8BT4liay8jBaAdLS2gIRz/sKw6hg3LndX2UKGgGR8Byz0qur6tUaAdLY2gIRz/tRnnMdLg5dX2UKGgGR8BdusCT2WY4aAdLO2gIRz/t2Nm16Vt5dX2UKGgGR8BwaPVsk6cRaAdLWWgIRz/unG0eEIw/dX2UKGgGR8B0bO/pMYdiaAdLTmgIRz/vT6rNnoPkdX2UKGgGR8Brs+nl4keIaAdLSmgIRz/wJ4jbBXS0dX2UKGgGR8BZgwqiGnGbaAdLa2gIRz/wlAAyVObidX2UKGgGR8Bn+BOi35N5aAdLQ2gIRz/w5TAFgUlBdX2UKGgGR8B1xcDklu3uaAdLaGgIRz/xc1O0svqUdX2UKGgGR8BUL5lFtsN2aAdLPmgIRz/xv5gw482adX2UKGgGR8BaCKKLsKLLaAdLWGgIRz/yHw9aEBbOdX2UKGgGR8CBOlXgccU/aAdLfGgIRz/yvH5rP+n7dX2UKGgGR8Bwt+Jgssg/aAdLbmgIRz/zUvK2a2F4dX2UKGgGR8BgJsHyEtdzaAdLXWgIRz/ztD2Jzkp7dX2UKGgGR8BV66h11W8zaAdLRWgIRz/0LeyiVSn+dX2UKGgGR8BePSZBsyi3aAdLamgIRz/0leBxxT86dX2UKGgGR8BRVFGPPszEaAdLWWgIRz/1HizcAR02dX2UKGgGR8BrEEMLF4s3aAdLaWgIRz/1iHM2WIGhdX2UKGgGR8Bxcr+qBEroaAdLZGgIRz/2Gl/H5rP/dX2UKGgGR8Bxd4UxmCiAaAdLe2gIRz/2wmzByjpLdX2UKGgGR8BTtjSCvovBaAdLhGgIRz/3bBTGYKIBdX2UKGgGR8BmJDdznzQNaAdLemgIRz/4DgIhQm/ndX2UKGgGR8BqcSwOe8PGaAdLeGgIRz/4rQLNOdoWdX2UKGgGR8BfI7a7EpAlaAdLPWgIRz/40OZssQNDdX2UKGgGR8BWk6hxo7FLaAdLUGgIRz/5UpmVZ9uxdX2UKGgGR8B4ad9Wp6yCaAdLbmgIRz/5wnMMZxaQdX2UKGgGR8Bwytlar3j/aAdLV2gIRz/6TzI3irDJdX2UKGgGR8B+d/FglWwNaAdLnWgIRz/7FKTSsr/bdX2UKGgGR8CAI/xvNu+AaAdLWmgIRz/7n7HhjvuxdX2UKGgGR8B58uOdXko4aAdLkWgIRz/8V5fMOf/WdX2UKGgGR8B4sgFnqVyFaAdLUGgIRz/8tDQZ4wAVdX2UKGgGR8B/tTH1e0HAaAdLd2gIRz/9Vq33Hq/udX2UKGgGR8Brm2cUdq+KaAdLWWgIRz/9uuJUHY6GdX2UKGgGR8B4p/YZl4C7aAdLa2gIRz/+U8zQ/oq1dX2UKGgGR8Bx3eJP69CeaAdLaWgIRz/+7FKkEcKgdX2UKGgGR8B0hGi7CiyqaAdLW2gIRz//UOuq3mV8dX2UKGgGR8BYQoAfdRBNaAdLVGgIRz//tWhh6SkkdX2UKGgGR8B4AGFev6j4aAdLVmgIR0AAHtx+8XendX2UKGgGR8CAhB/RVp9JaAdLfGgIR0AAcxubZvkzdX2UKGgGR8B26ErlNlAeaAdLW2gIR0AApokAxSHedX2UKGgGR8CCklB1s+FDaAdLf2gIR0AA+rKeTV2BdX2UKGgGR8B3CSJO32EkaAdLW2gIR0ABQmVqveP8dX2UKGgGR8Bxvi4gA6uGaAdLXGgIR0ABdVzZHuqndX2UKGgGR8BzhEORT0g9aAdLdmgIR0ABx9JBgNPQdX2UKGgGR8B4uao60Y0maAdLVGgIR0AB+FtbcGkfdX2UKGgGR8B93lzq8lHCaAdLbWgIR0ACRkqc3EQ5dX2UKGgGR8B4AMQd0aIfaAdLXWgIR0ACeDSPU8V6dX2UKGgGR8B7vYdZJTVEaAdLcmgIR0ACyWX1J17qdX2UKGgGR8BzyKJzkp7UaAdLX2gIR0ADEbBGhEjPdX2UKGgGR8B9mvA1vVEvaAdLdGgIR0ADTcdo371qdX2UKGgGR8B6WAKohpxnaAdLWmgIR0ADk+/xlQMydX2UKGgGR8CAXR/YJ3PiaAdLi2gIR0AD8iGFi8WcdX2UKGgGR8B6wo78vVVhaAdLiWgIR0AESjk+5e7ddX2UKGgGR8BOcPNVzZHvaAdLkmgIR0AEp/I8yN4rdX2UKGgGR8B67ooy9EkTaAdLh2gIR0AFHDP4VRDUdX2UKGgGR8BuLPGIbfgraAdLo2gIR0AFg/u9eyAydX2UKGgGR8B5Sh44ZMtcaAdLTWgIR0AFsEV32VVxdX2UKGgGR8CFXKI/qxC6aAdLfmgIR0AGA97ngYP5dX2UKGgGR8B83pnIyTIOaAdLb2gIR0AGVKXfIjnndX2UKGgGR8B9K9r56+nJaAdLYmgIR0AGnVAiV0LddX2UKGgGR8BEJldC3PRiaAdLUGgIR0AGzGkvboKVdX2UKGgGR8Bf7HR9gF5faAdLcWgIR0AHGpEQXhwVdX2UKGgGR8B8/ZVinYQKaAdLZWgIR0AHUBKcurZKdX2UKGgGR8B5muuIRAbAaAdLgGgIR0AHpaLXL/0edX2UKGgGR8CHp8g8KXv6aAdLk2gIR0AIAv38GcFydX2UKGgGR8B83902cawVaAdLe2gIR0AIWrQw9JSSdX2UKGgGR8CFFsFVT72taAdLsmgIR0AI3d69kBjndX2UKGgGR8CCcqgOBlMAaAdLhGgIR0AJNMmF8G9pdX2UKGgGR8CA7uWGATZhaAdLbGgIR0AJf5P/JeVtdX2UKGgGR8B7ckPnSv1UaAdLWmgIR0AJsMb3oLXudX2UKGgGR8B7No/dIoVmaAdLVWgIR0AJ9S4vvjOtdX2UKGgGR8CGh2I1LrX2aAdLm2gIR0AKVBfKISDidX2UKGgGR8CCVqw35vcaaAdLbGgIR0AKofhddE9ddX2UKGgGR8CD/2hdMTN/aAdLgWgIR0AK9fzBhx5tdX2UKGgGR8CAvJFKkEcLaAdLXWgIR0ALKRwIdELIdX2UKGgGR8BvK3s/pt78aAdLYWgIR0ALc6ij+JgtdX2UKGgGR8CF4sZof0VaaAdLm2gIR0AL2EkB0ZFYdX2UKGgGR8B4oapfhMrVaAdLXmgIR0AMILThHbypdX2UKGgGR8CCvntpmEoOaAdLhmgIR0AMehK15Sm7dX2UKGgGR8CGzL3dsSCfaAdLhmgIR0AM0Cih37k5dX2UKGgGR8CET+dKdxyXaAdLcGgIR0ANHd0q6OHWdX2UKGgGR8CFmfvH93r2aAdLgGgIR0ANcsH0K7ZndX2UKGgGR8BwWTyPMjeLaAdLd2gIR0ANs7r9l2/0dX2UKGgGR8B3L2kadc0MaAdLZGgIR0AN/1anrIHUdWUu"
|
| 49 |
+
},
|
| 50 |
+
"ep_success_buffer": {
|
| 51 |
+
":type:": "<class 'collections.deque'>",
|
| 52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
+
},
|
| 54 |
+
"_n_updates": 1570,
|
| 55 |
+
"observation_space": {
|
| 56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
+
":serialized:": "gAWVZwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAwL8AAMC/AACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAAMA/AADAPwAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxTWy0xLjUgICAgICAgLTEuNSAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0wLiAgICAgICAgLTAuICAgICAgIF2UjAloaWdoX3JlcHKUjEtbMS41ICAgICAgIDEuNSAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMS4KIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
| 58 |
+
"dtype": "float32",
|
| 59 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 60 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 61 |
+
"_shape": [
|
| 62 |
+
8
|
| 63 |
+
],
|
| 64 |
+
"low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 65 |
+
"high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
|
| 66 |
+
"low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 67 |
+
"high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
|
| 68 |
+
"_np_random": null
|
| 69 |
+
},
|
| 70 |
+
"action_space": {
|
| 71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 72 |
+
":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
|
| 73 |
+
"n": "4",
|
| 74 |
+
"start": "0",
|
| 75 |
+
"_shape": [],
|
| 76 |
+
"dtype": "int64",
|
| 77 |
+
"_np_random": null
|
| 78 |
+
},
|
| 79 |
+
"n_envs": 1,
|
| 80 |
+
"n_steps": 64,
|
| 81 |
+
"gamma": 0.99,
|
| 82 |
+
"gae_lambda": 0.95,
|
| 83 |
+
"ent_coef": 0.0,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 64,
|
| 87 |
+
"n_epochs": 10,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWVBAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGAvVXNlcnMvbHVpamFpdC9kZWVwcmwtY291cnNlL3ZlbnYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLg0MI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxgL1VzZXJzL2x1aWphaXQvZGVlcHJsLWNvdXJzZS92ZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null,
|
| 95 |
+
"lr_schedule": {
|
| 96 |
+
":type:": "<class 'function'>",
|
| 97 |
+
":serialized:": "gAWVBAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGAvVXNlcnMvbHVpamFpdC9kZWVwcmwtY291cnNlL3ZlbnYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLg0MI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxgL1VzZXJzL2x1aWphaXQvZGVlcHJsLWNvdXJzZS92ZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 98 |
+
}
|
| 99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8b60557806e1a0c5c9e7691441ab91e95509372e54bb5bb99ccd2c13e90c31a9
|
| 3 |
+
size 88375
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:69e607d5d5051dfe5726b633932d870a696dee1202246f2a2d87622b7fa507bf
|
| 3 |
+
size 43967
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7b6bbfc035aeac78f3ee425960893ff8bb7927d3cf3425470ac4b6c6ce280c5d
|
| 3 |
+
size 1261
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: macOS-16.0-arm64-arm-64bit Darwin Kernel Version 25.0.0: Tue Jun 17 00:08:06 PDT 2025; root:xnu-12377.0.122.0.1~120/RELEASE_ARM64_T6041
|
| 2 |
+
- Python: 3.12.7
|
| 3 |
+
- Stable-Baselines3: 2.1.0
|
| 4 |
+
- PyTorch: 2.7.1
|
| 5 |
+
- GPU Enabled: False
|
| 6 |
+
- Numpy: 2.3.1
|
| 7 |
+
- Cloudpickle: 3.1.1
|
| 8 |
+
- Gymnasium: 0.29.1
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5a81fb4f2581a2ee5fef315a25680f64346eab6570ca5b075af8d15864dcb6c6
|
| 3 |
+
size 105187
|
results.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"mean_reward":
|
|
|
|
| 1 |
+
{"mean_reward": -1070.3353720092389, "std_reward": 1311.6980823102112, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-07-20T21:54:34.970975"}
|