luijait commited on
Commit
bfab97b
·
verified ·
1 Parent(s): 2e34364

Upload PPO LunarLander-v2 model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,57 +1,37 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
- - deep-rl-course
 
6
  model-index:
7
  - name: PPO
8
  results:
9
- - metrics:
10
- - type: mean_reward
11
- value: 116.62 +/- 109.65
12
- name: mean_reward
13
- task:
14
  type: reinforcement-learning
15
  name: reinforcement-learning
16
  dataset:
17
  name: LunarLander-v2
18
  type: LunarLander-v2
 
 
 
 
 
19
  ---
20
 
21
  # **PPO** Agent playing **LunarLander-v2**
22
- This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
23
-
24
- The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
25
-
26
- ## Usage (with SB3 RL Zoo)
27
 
28
- RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
29
- SB3: https://github.com/DLR-RM/stable-baselines3<br/>
30
- SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
31
 
32
- ```
33
- # Download model and save it into the logs/ folder
34
- python -m rl_zoo3.load_from_hub --algo ppo --env LunarLander-v2 -orga luijait -f logs/
35
- python enjoy.py --algo ppo --env LunarLander-v2 -f logs/
36
- ```
37
-
38
- ## Training (with the RL Zoo)
39
- ```
40
- python train.py --algo ppo --env LunarLander-v2 -f logs/
41
- # Upload the model and generate video (when possible)
42
- python -m rl_zoo3.push_to_hub --algo ppo --env LunarLander-v2 -f logs/ -orga luijait
43
- ```
44
 
45
- ## Hyperparameters
46
  ```python
47
- OrderedDict([('batch_size', 64),
48
- ('ent_coef', 0.01),
49
- ('gae_lambda', 0.98),
50
- ('gamma', 0.999),
51
- ('learning_rate', 0.00025),
52
- ('n_epochs', 4),
53
- ('n_steps', 1024),
54
- ('n_timesteps', 500000),
55
- ('normalize', False),
56
- ('policy', 'MlpPolicy')])
57
  ```
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
  model-index:
9
  - name: PPO
10
  results:
11
+ - task:
 
 
 
 
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
  name: LunarLander-v2
16
  type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1070.34 +/- 1311.70
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
 
24
  # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
 
 
 
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
 
30
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
 
32
  ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
 
 
 
 
 
 
37
  ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x111ef7100>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x111ef71a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x111ef7240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x111ef72e0>", "_build": "<function ActorCriticPolicy._build at 0x111ef7380>", "forward": "<function ActorCriticPolicy.forward at 0x111ef7420>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x111ef74c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x111ef7560>", "_predict": "<function ActorCriticPolicy._predict at 0x111ef7600>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x111ef76a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x111ef7740>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x111ef77e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x111eee740>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 10048, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1753041271084144000, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlgAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAADmswC+llPuPzIs+L5DxhM/zOK7PoEaHD4AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0047999999999999154, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVSgsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEAhMB6rvLKMAWyUS1qMAXSURz/jVXvH93r2dX2UKGgGR8Bcmfs/pt78aAdLYmgIRz/kLFOwgTysdX2UKGgGR8BYTbcTJyQxaAdLUWgIRz/lMjeKsMiKdX2UKGgGR8BliXI8yN4raAdLS2gIRz/l23Sa3I+4dX2UKGgGR8BbSNEsrd30aAdLQ2gIRz/mfB3zMA3ldX2UKGgGR8BfMuPzWf9QaAdLPmgIRz/nEYfnwG4adX2UKGgGR8BwOPlbNbC8aAdLcGgIRz/oO32EkB0ZdX2UKGgGR8B4hwlIEr5JaAdLZGgIRz/pBkZrHlwMdX2UKGgGR8BRI/GyX2M9aAdLTmgIRz/psMI/qxC6dX2UKGgGR8Bp0pFb3XZoaAdLWmgIRz/qvbfxc3VDdX2UKGgGR8B2h5Jg9eQdaAdLWmgIRz/reyzHCGeudX2UKGgGR8BT4liay8jBaAdLS2gIRz/sKw6hg3LndX2UKGgGR8Byz0qur6tUaAdLY2gIRz/tRnnMdLg5dX2UKGgGR8BdusCT2WY4aAdLO2gIRz/t2Nm16Vt5dX2UKGgGR8BwaPVsk6cRaAdLWWgIRz/unG0eEIw/dX2UKGgGR8B0bO/pMYdiaAdLTmgIRz/vT6rNnoPkdX2UKGgGR8Brs+nl4keIaAdLSmgIRz/wJ4jbBXS0dX2UKGgGR8BZgwqiGnGbaAdLa2gIRz/wlAAyVObidX2UKGgGR8Bn+BOi35N5aAdLQ2gIRz/w5TAFgUlBdX2UKGgGR8B1xcDklu3uaAdLaGgIRz/xc1O0svqUdX2UKGgGR8BUL5lFtsN2aAdLPmgIRz/xv5gw482adX2UKGgGR8BaCKKLsKLLaAdLWGgIRz/yHw9aEBbOdX2UKGgGR8CBOlXgccU/aAdLfGgIRz/yvH5rP+n7dX2UKGgGR8Bwt+Jgssg/aAdLbmgIRz/zUvK2a2F4dX2UKGgGR8BgJsHyEtdzaAdLXWgIRz/ztD2Jzkp7dX2UKGgGR8BV66h11W8zaAdLRWgIRz/0LeyiVSn+dX2UKGgGR8BePSZBsyi3aAdLamgIRz/0leBxxT86dX2UKGgGR8BRVFGPPszEaAdLWWgIRz/1HizcAR02dX2UKGgGR8BrEEMLF4s3aAdLaWgIRz/1iHM2WIGhdX2UKGgGR8Bxcr+qBEroaAdLZGgIRz/2Gl/H5rP/dX2UKGgGR8Bxd4UxmCiAaAdLe2gIRz/2wmzByjpLdX2UKGgGR8BTtjSCvovBaAdLhGgIRz/3bBTGYKIBdX2UKGgGR8BmJDdznzQNaAdLemgIRz/4DgIhQm/ndX2UKGgGR8BqcSwOe8PGaAdLeGgIRz/4rQLNOdoWdX2UKGgGR8BfI7a7EpAlaAdLPWgIRz/40OZssQNDdX2UKGgGR8BWk6hxo7FLaAdLUGgIRz/5UpmVZ9uxdX2UKGgGR8B4ad9Wp6yCaAdLbmgIRz/5wnMMZxaQdX2UKGgGR8Bwytlar3j/aAdLV2gIRz/6TzI3irDJdX2UKGgGR8B+d/FglWwNaAdLnWgIRz/7FKTSsr/bdX2UKGgGR8CAI/xvNu+AaAdLWmgIRz/7n7HhjvuxdX2UKGgGR8B58uOdXko4aAdLkWgIRz/8V5fMOf/WdX2UKGgGR8B4sgFnqVyFaAdLUGgIRz/8tDQZ4wAVdX2UKGgGR8B/tTH1e0HAaAdLd2gIRz/9Vq33Hq/udX2UKGgGR8Brm2cUdq+KaAdLWWgIRz/9uuJUHY6GdX2UKGgGR8B4p/YZl4C7aAdLa2gIRz/+U8zQ/oq1dX2UKGgGR8Bx3eJP69CeaAdLaWgIRz/+7FKkEcKgdX2UKGgGR8B0hGi7CiyqaAdLW2gIRz//UOuq3mV8dX2UKGgGR8BYQoAfdRBNaAdLVGgIRz//tWhh6SkkdX2UKGgGR8B4AGFev6j4aAdLVmgIR0AAHtx+8XendX2UKGgGR8CAhB/RVp9JaAdLfGgIR0AAcxubZvkzdX2UKGgGR8B26ErlNlAeaAdLW2gIR0AApokAxSHedX2UKGgGR8CCklB1s+FDaAdLf2gIR0AA+rKeTV2BdX2UKGgGR8B3CSJO32EkaAdLW2gIR0ABQmVqveP8dX2UKGgGR8Bxvi4gA6uGaAdLXGgIR0ABdVzZHuqndX2UKGgGR8BzhEORT0g9aAdLdmgIR0ABx9JBgNPQdX2UKGgGR8B4uao60Y0maAdLVGgIR0AB+FtbcGkfdX2UKGgGR8B93lzq8lHCaAdLbWgIR0ACRkqc3EQ5dX2UKGgGR8B4AMQd0aIfaAdLXWgIR0ACeDSPU8V6dX2UKGgGR8B7vYdZJTVEaAdLcmgIR0ACyWX1J17qdX2UKGgGR8BzyKJzkp7UaAdLX2gIR0ADEbBGhEjPdX2UKGgGR8B9mvA1vVEvaAdLdGgIR0ADTcdo371qdX2UKGgGR8B6WAKohpxnaAdLWmgIR0ADk+/xlQMydX2UKGgGR8CAXR/YJ3PiaAdLi2gIR0AD8iGFi8WcdX2UKGgGR8B6wo78vVVhaAdLiWgIR0AESjk+5e7ddX2UKGgGR8BOcPNVzZHvaAdLkmgIR0AEp/I8yN4rdX2UKGgGR8B67ooy9EkTaAdLh2gIR0AFHDP4VRDUdX2UKGgGR8BuLPGIbfgraAdLo2gIR0AFg/u9eyAydX2UKGgGR8B5Sh44ZMtcaAdLTWgIR0AFsEV32VVxdX2UKGgGR8CFXKI/qxC6aAdLfmgIR0AGA97ngYP5dX2UKGgGR8B83pnIyTIOaAdLb2gIR0AGVKXfIjnndX2UKGgGR8B9K9r56+nJaAdLYmgIR0AGnVAiV0LddX2UKGgGR8BEJldC3PRiaAdLUGgIR0AGzGkvboKVdX2UKGgGR8Bf7HR9gF5faAdLcWgIR0AHGpEQXhwVdX2UKGgGR8B8/ZVinYQKaAdLZWgIR0AHUBKcurZKdX2UKGgGR8B5muuIRAbAaAdLgGgIR0AHpaLXL/0edX2UKGgGR8CHp8g8KXv6aAdLk2gIR0AIAv38GcFydX2UKGgGR8B83902cawVaAdLe2gIR0AIWrQw9JSSdX2UKGgGR8CFFsFVT72taAdLsmgIR0AI3d69kBjndX2UKGgGR8CCcqgOBlMAaAdLhGgIR0AJNMmF8G9pdX2UKGgGR8CA7uWGATZhaAdLbGgIR0AJf5P/JeVtdX2UKGgGR8B7ckPnSv1UaAdLWmgIR0AJsMb3oLXudX2UKGgGR8B7No/dIoVmaAdLVWgIR0AJ9S4vvjOtdX2UKGgGR8CGh2I1LrX2aAdLm2gIR0AKVBfKISDidX2UKGgGR8CCVqw35vcaaAdLbGgIR0AKofhddE9ddX2UKGgGR8CD/2hdMTN/aAdLgWgIR0AK9fzBhx5tdX2UKGgGR8CAvJFKkEcLaAdLXWgIR0ALKRwIdELIdX2UKGgGR8BvK3s/pt78aAdLYWgIR0ALc6ij+JgtdX2UKGgGR8CF4sZof0VaaAdLm2gIR0AL2EkB0ZFYdX2UKGgGR8B4oapfhMrVaAdLXmgIR0AMILThHbypdX2UKGgGR8CCvntpmEoOaAdLhmgIR0AMehK15Sm7dX2UKGgGR8CGzL3dsSCfaAdLhmgIR0AM0Cih37k5dX2UKGgGR8CET+dKdxyXaAdLcGgIR0ANHd0q6OHWdX2UKGgGR8CFmfvH93r2aAdLgGgIR0ANcsH0K7ZndX2UKGgGR8BwWTyPMjeLaAdLd2gIR0ANs7r9l2/0dX2UKGgGR8B3L2kadc0MaAdLZGgIR0AN/1anrIHUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1570, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAwL8AAMC/AACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAAMA/AADAPwAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxTWy0xLjUgICAgICAgLTEuNSAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0wLiAgICAgICAgLTAuICAgICAgIF2UjAloaWdoX3JlcHKUjEtbMS41ICAgICAgIDEuNSAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMS4KIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 64, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVBAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGAvVXNlcnMvbHVpamFpdC9kZWVwcmwtY291cnNlL3ZlbnYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLg0MI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxgL1VzZXJzL2x1aWphaXQvZGVlcHJsLWNvdXJzZS92ZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVBAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGAvVXNlcnMvbHVpamFpdC9kZWVwcmwtY291cnNlL3ZlbnYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLg0MI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxgL1VzZXJzL2x1aWphaXQvZGVlcHJsLWNvdXJzZS92ZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "macOS-16.0-arm64-arm-64bit Darwin Kernel Version 25.0.0: Tue Jun 17 00:08:06 PDT 2025; root:xnu-12377.0.122.0.1~120/RELEASE_ARM64_T6041", "Python": "3.12.7", "Stable-Baselines3": "2.1.0", "PyTorch": "2.7.1", "GPU Enabled": "False", "Numpy": "2.3.1", "Cloudpickle": "3.1.1", "Gymnasium": "0.29.1"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6d6de98b2627f348c160543f6433fb23c71e7e2c2d35c55c845cca3c1f215c6d
3
- size 148112
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:892b1aecc14eec0589fdb6c3d98923ccb551e20ccee3140c27ef026c913a82c8
3
+ size 147793
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x111ef7100>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x111ef71a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x111ef7240>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x111ef72e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x111ef7380>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x111ef7420>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x111ef74c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x111ef7560>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x111ef7600>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x111ef76a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x111ef7740>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x111ef77e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x111eee740>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 10048,
25
+ "_total_timesteps": 10000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1753041271084144000,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlgAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAADmswC+llPuPzIs+L5DxhM/zOK7PoEaHD4AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsIhpSMAUOUdJRSlC4="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0047999999999999154,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVSgsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEAhMB6rvLKMAWyUS1qMAXSURz/jVXvH93r2dX2UKGgGR8Bcmfs/pt78aAdLYmgIRz/kLFOwgTysdX2UKGgGR8BYTbcTJyQxaAdLUWgIRz/lMjeKsMiKdX2UKGgGR8BliXI8yN4raAdLS2gIRz/l23Sa3I+4dX2UKGgGR8BbSNEsrd30aAdLQ2gIRz/mfB3zMA3ldX2UKGgGR8BfMuPzWf9QaAdLPmgIRz/nEYfnwG4adX2UKGgGR8BwOPlbNbC8aAdLcGgIRz/oO32EkB0ZdX2UKGgGR8B4hwlIEr5JaAdLZGgIRz/pBkZrHlwMdX2UKGgGR8BRI/GyX2M9aAdLTmgIRz/psMI/qxC6dX2UKGgGR8Bp0pFb3XZoaAdLWmgIRz/qvbfxc3VDdX2UKGgGR8B2h5Jg9eQdaAdLWmgIRz/reyzHCGeudX2UKGgGR8BT4liay8jBaAdLS2gIRz/sKw6hg3LndX2UKGgGR8Byz0qur6tUaAdLY2gIRz/tRnnMdLg5dX2UKGgGR8BdusCT2WY4aAdLO2gIRz/t2Nm16Vt5dX2UKGgGR8BwaPVsk6cRaAdLWWgIRz/unG0eEIw/dX2UKGgGR8B0bO/pMYdiaAdLTmgIRz/vT6rNnoPkdX2UKGgGR8Brs+nl4keIaAdLSmgIRz/wJ4jbBXS0dX2UKGgGR8BZgwqiGnGbaAdLa2gIRz/wlAAyVObidX2UKGgGR8Bn+BOi35N5aAdLQ2gIRz/w5TAFgUlBdX2UKGgGR8B1xcDklu3uaAdLaGgIRz/xc1O0svqUdX2UKGgGR8BUL5lFtsN2aAdLPmgIRz/xv5gw482adX2UKGgGR8BaCKKLsKLLaAdLWGgIRz/yHw9aEBbOdX2UKGgGR8CBOlXgccU/aAdLfGgIRz/yvH5rP+n7dX2UKGgGR8Bwt+Jgssg/aAdLbmgIRz/zUvK2a2F4dX2UKGgGR8BgJsHyEtdzaAdLXWgIRz/ztD2Jzkp7dX2UKGgGR8BV66h11W8zaAdLRWgIRz/0LeyiVSn+dX2UKGgGR8BePSZBsyi3aAdLamgIRz/0leBxxT86dX2UKGgGR8BRVFGPPszEaAdLWWgIRz/1HizcAR02dX2UKGgGR8BrEEMLF4s3aAdLaWgIRz/1iHM2WIGhdX2UKGgGR8Bxcr+qBEroaAdLZGgIRz/2Gl/H5rP/dX2UKGgGR8Bxd4UxmCiAaAdLe2gIRz/2wmzByjpLdX2UKGgGR8BTtjSCvovBaAdLhGgIRz/3bBTGYKIBdX2UKGgGR8BmJDdznzQNaAdLemgIRz/4DgIhQm/ndX2UKGgGR8BqcSwOe8PGaAdLeGgIRz/4rQLNOdoWdX2UKGgGR8BfI7a7EpAlaAdLPWgIRz/40OZssQNDdX2UKGgGR8BWk6hxo7FLaAdLUGgIRz/5UpmVZ9uxdX2UKGgGR8B4ad9Wp6yCaAdLbmgIRz/5wnMMZxaQdX2UKGgGR8Bwytlar3j/aAdLV2gIRz/6TzI3irDJdX2UKGgGR8B+d/FglWwNaAdLnWgIRz/7FKTSsr/bdX2UKGgGR8CAI/xvNu+AaAdLWmgIRz/7n7HhjvuxdX2UKGgGR8B58uOdXko4aAdLkWgIRz/8V5fMOf/WdX2UKGgGR8B4sgFnqVyFaAdLUGgIRz/8tDQZ4wAVdX2UKGgGR8B/tTH1e0HAaAdLd2gIRz/9Vq33Hq/udX2UKGgGR8Brm2cUdq+KaAdLWWgIRz/9uuJUHY6GdX2UKGgGR8B4p/YZl4C7aAdLa2gIRz/+U8zQ/oq1dX2UKGgGR8Bx3eJP69CeaAdLaWgIRz/+7FKkEcKgdX2UKGgGR8B0hGi7CiyqaAdLW2gIRz//UOuq3mV8dX2UKGgGR8BYQoAfdRBNaAdLVGgIRz//tWhh6SkkdX2UKGgGR8B4AGFev6j4aAdLVmgIR0AAHtx+8XendX2UKGgGR8CAhB/RVp9JaAdLfGgIR0AAcxubZvkzdX2UKGgGR8B26ErlNlAeaAdLW2gIR0AApokAxSHedX2UKGgGR8CCklB1s+FDaAdLf2gIR0AA+rKeTV2BdX2UKGgGR8B3CSJO32EkaAdLW2gIR0ABQmVqveP8dX2UKGgGR8Bxvi4gA6uGaAdLXGgIR0ABdVzZHuqndX2UKGgGR8BzhEORT0g9aAdLdmgIR0ABx9JBgNPQdX2UKGgGR8B4uao60Y0maAdLVGgIR0AB+FtbcGkfdX2UKGgGR8B93lzq8lHCaAdLbWgIR0ACRkqc3EQ5dX2UKGgGR8B4AMQd0aIfaAdLXWgIR0ACeDSPU8V6dX2UKGgGR8B7vYdZJTVEaAdLcmgIR0ACyWX1J17qdX2UKGgGR8BzyKJzkp7UaAdLX2gIR0ADEbBGhEjPdX2UKGgGR8B9mvA1vVEvaAdLdGgIR0ADTcdo371qdX2UKGgGR8B6WAKohpxnaAdLWmgIR0ADk+/xlQMydX2UKGgGR8CAXR/YJ3PiaAdLi2gIR0AD8iGFi8WcdX2UKGgGR8B6wo78vVVhaAdLiWgIR0AESjk+5e7ddX2UKGgGR8BOcPNVzZHvaAdLkmgIR0AEp/I8yN4rdX2UKGgGR8B67ooy9EkTaAdLh2gIR0AFHDP4VRDUdX2UKGgGR8BuLPGIbfgraAdLo2gIR0AFg/u9eyAydX2UKGgGR8B5Sh44ZMtcaAdLTWgIR0AFsEV32VVxdX2UKGgGR8CFXKI/qxC6aAdLfmgIR0AGA97ngYP5dX2UKGgGR8B83pnIyTIOaAdLb2gIR0AGVKXfIjnndX2UKGgGR8B9K9r56+nJaAdLYmgIR0AGnVAiV0LddX2UKGgGR8BEJldC3PRiaAdLUGgIR0AGzGkvboKVdX2UKGgGR8Bf7HR9gF5faAdLcWgIR0AHGpEQXhwVdX2UKGgGR8B8/ZVinYQKaAdLZWgIR0AHUBKcurZKdX2UKGgGR8B5muuIRAbAaAdLgGgIR0AHpaLXL/0edX2UKGgGR8CHp8g8KXv6aAdLk2gIR0AIAv38GcFydX2UKGgGR8B83902cawVaAdLe2gIR0AIWrQw9JSSdX2UKGgGR8CFFsFVT72taAdLsmgIR0AI3d69kBjndX2UKGgGR8CCcqgOBlMAaAdLhGgIR0AJNMmF8G9pdX2UKGgGR8CA7uWGATZhaAdLbGgIR0AJf5P/JeVtdX2UKGgGR8B7ckPnSv1UaAdLWmgIR0AJsMb3oLXudX2UKGgGR8B7No/dIoVmaAdLVWgIR0AJ9S4vvjOtdX2UKGgGR8CGh2I1LrX2aAdLm2gIR0AKVBfKISDidX2UKGgGR8CCVqw35vcaaAdLbGgIR0AKofhddE9ddX2UKGgGR8CD/2hdMTN/aAdLgWgIR0AK9fzBhx5tdX2UKGgGR8CAvJFKkEcLaAdLXWgIR0ALKRwIdELIdX2UKGgGR8BvK3s/pt78aAdLYWgIR0ALc6ij+JgtdX2UKGgGR8CF4sZof0VaaAdLm2gIR0AL2EkB0ZFYdX2UKGgGR8B4oapfhMrVaAdLXmgIR0AMILThHbypdX2UKGgGR8CCvntpmEoOaAdLhmgIR0AMehK15Sm7dX2UKGgGR8CGzL3dsSCfaAdLhmgIR0AM0Cih37k5dX2UKGgGR8CET+dKdxyXaAdLcGgIR0ANHd0q6OHWdX2UKGgGR8CFmfvH93r2aAdLgGgIR0ANcsH0K7ZndX2UKGgGR8BwWTyPMjeLaAdLd2gIR0ANs7r9l2/0dX2UKGgGR8B3L2kadc0MaAdLZGgIR0AN/1anrIHUdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 1570,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVZwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAwL8AAMC/AACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAAMA/AADAPwAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxTWy0xLjUgICAgICAgLTEuNSAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0wLiAgICAgICAgLTAuICAgICAgIF2UjAloaWdoX3JlcHKUjEtbMS41ICAgICAgIDEuNSAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMS4KIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
66
+ "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 64,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVBAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGAvVXNlcnMvbHVpamFpdC9kZWVwcmwtY291cnNlL3ZlbnYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLg0MI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxgL1VzZXJzL2x1aWphaXQvZGVlcHJsLWNvdXJzZS92ZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVBAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjGAvVXNlcnMvbHVpamFpdC9kZWVwcmwtY291cnNlL3ZlbnYvbGliL3B5dGhvbjMuMTIvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLg0MI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxgL1VzZXJzL2x1aWphaXQvZGVlcHJsLWNvdXJzZS92ZW52L2xpYi9weXRob24zLjEyL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGIwEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b60557806e1a0c5c9e7691441ab91e95509372e54bb5bb99ccd2c13e90c31a9
3
+ size 88375
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69e607d5d5051dfe5726b633932d870a696dee1202246f2a2d87622b7fa507bf
3
+ size 43967
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b6bbfc035aeac78f3ee425960893ff8bb7927d3cf3425470ac4b6c6ce280c5d
3
+ size 1261
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ - OS: macOS-16.0-arm64-arm-64bit Darwin Kernel Version 25.0.0: Tue Jun 17 00:08:06 PDT 2025; root:xnu-12377.0.122.0.1~120/RELEASE_ARM64_T6041
2
+ - Python: 3.12.7
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.7.1
5
+ - GPU Enabled: False
6
+ - Numpy: 2.3.1
7
+ - Cloudpickle: 3.1.1
8
+ - Gymnasium: 0.29.1
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a81fb4f2581a2ee5fef315a25680f64346eab6570ca5b075af8d15864dcb6c6
3
+ size 105187
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 116.61681770817685, "std_reward": 109.65352998263211, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-20T21:00:00"}
 
1
+ {"mean_reward": -1070.3353720092389, "std_reward": 1311.6980823102112, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-07-20T21:54:34.970975"}