add code for using kenlm
Browse files- Fine_Tune_XLS_R_on_Common_Voice.ipynb +0 -0
- eval_lm.py +229 -0
Fine_Tune_XLS_R_on_Common_Voice.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
eval_lm.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import functools
|
4 |
+
import re
|
5 |
+
import string
|
6 |
+
import unidecode
|
7 |
+
from typing import Dict
|
8 |
+
|
9 |
+
from datasets import Audio, Dataset, DatasetDict, load_dataset, load_metric
|
10 |
+
|
11 |
+
from transformers import AutoFeatureExtractor, AutoTokenizer, pipeline
|
12 |
+
|
13 |
+
|
14 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
15 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
16 |
+
|
17 |
+
log_outputs = args.log_outputs
|
18 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
19 |
+
|
20 |
+
# load metric
|
21 |
+
wer = load_metric("wer")
|
22 |
+
cer = load_metric("cer")
|
23 |
+
|
24 |
+
# compute metrics
|
25 |
+
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
|
26 |
+
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
|
27 |
+
|
28 |
+
# print & log results
|
29 |
+
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
30 |
+
print(result_str)
|
31 |
+
|
32 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
33 |
+
f.write(result_str)
|
34 |
+
|
35 |
+
# log all results in text file. Possibly interesting for analysis
|
36 |
+
if log_outputs is not None:
|
37 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
38 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
39 |
+
|
40 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
41 |
+
|
42 |
+
# mapping function to write output
|
43 |
+
def write_to_file(batch, i):
|
44 |
+
p.write(f"{i}" + "\n")
|
45 |
+
p.write(batch["prediction"] + "\n")
|
46 |
+
t.write(f"{i}" + "\n")
|
47 |
+
t.write(batch["target"] + "\n")
|
48 |
+
|
49 |
+
result.map(write_to_file, with_indices=True)
|
50 |
+
|
51 |
+
|
52 |
+
def normalize_text(text: str) -> str:
|
53 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
54 |
+
|
55 |
+
chars_to_ignore_regex = f'[{re.escape(string.punctuation)}]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
|
56 |
+
|
57 |
+
text = re.sub(
|
58 |
+
chars_to_ignore_regex,
|
59 |
+
"",
|
60 |
+
re.sub("['`´]", "’", # elsewhere probably meant as glottal stop
|
61 |
+
re.sub("([og])['`´]", "\g<1>‘", # after o/g indicate modified char
|
62 |
+
unidecode.unidecode(text).lower()
|
63 |
+
)
|
64 |
+
)
|
65 |
+
) + " "
|
66 |
+
|
67 |
+
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
|
68 |
+
# note that order is important here!
|
69 |
+
token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
|
70 |
+
|
71 |
+
for t in token_sequences_to_ignore:
|
72 |
+
text = " ".join(text.split(t))
|
73 |
+
|
74 |
+
return text
|
75 |
+
|
76 |
+
|
77 |
+
def create_vocabulary_from_data(
|
78 |
+
datasets: DatasetDict,
|
79 |
+
word_delimiter_token = None,
|
80 |
+
unk_token = None,
|
81 |
+
pad_token = None,
|
82 |
+
):
|
83 |
+
# Given training and test labels create vocabulary
|
84 |
+
def extract_all_chars(batch):
|
85 |
+
all_text = " ".join(batch["target"])
|
86 |
+
vocab = list(set(all_text))
|
87 |
+
return {"vocab": [vocab], "all_text": [all_text]}
|
88 |
+
|
89 |
+
vocabs = datasets.map(
|
90 |
+
extract_all_chars,
|
91 |
+
batched=True,
|
92 |
+
batch_size=-1,
|
93 |
+
keep_in_memory=True,
|
94 |
+
remove_columns=datasets["test"].column_names,
|
95 |
+
)
|
96 |
+
|
97 |
+
|
98 |
+
vocab_dict = {v: k for k, v in enumerate(sorted(vocabs["test"]["vocab"][0]))}
|
99 |
+
|
100 |
+
# replace white space with delimiter token
|
101 |
+
if word_delimiter_token is not None:
|
102 |
+
vocab_dict[word_delimiter_token] = vocab_dict[" "]
|
103 |
+
del vocab_dict[" "]
|
104 |
+
|
105 |
+
# add unk and pad token
|
106 |
+
if unk_token is not None:
|
107 |
+
vocab_dict[unk_token] = len(vocab_dict)
|
108 |
+
|
109 |
+
if pad_token is not None:
|
110 |
+
vocab_dict[pad_token] = len(vocab_dict)
|
111 |
+
|
112 |
+
return vocab_dict
|
113 |
+
|
114 |
+
|
115 |
+
def asr_pipeline_lm(model_id):
|
116 |
+
from transformers.models.auto.modeling_auto import AutoModelForCTC
|
117 |
+
from transformers.models.auto.processing_auto import AutoProcessor
|
118 |
+
import torch
|
119 |
+
|
120 |
+
model = AutoModelForCTC.from_pretrained(model_id)
|
121 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
122 |
+
|
123 |
+
def asr(audio_array, sampling_rate):
|
124 |
+
input_values = processor(
|
125 |
+
audio_array,
|
126 |
+
return_tensors="pt",
|
127 |
+
sampling_rate=sampling_rate
|
128 |
+
).input_values
|
129 |
+
with torch.no_grad():
|
130 |
+
logits = model(input_values).logits
|
131 |
+
return processor.batch_decode(logits.numpy()).text
|
132 |
+
|
133 |
+
return asr
|
134 |
+
|
135 |
+
|
136 |
+
def main(args):
|
137 |
+
# load dataset
|
138 |
+
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
|
139 |
+
|
140 |
+
# for testing: only process the first two examples as a test
|
141 |
+
# dataset = dataset.select(range(10))
|
142 |
+
|
143 |
+
# load processor
|
144 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
145 |
+
sampling_rate = feature_extractor.sampling_rate
|
146 |
+
|
147 |
+
# resample audio
|
148 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
149 |
+
|
150 |
+
if args.use_lm:
|
151 |
+
asr = asr_pipeline_lm(args.model_id)
|
152 |
+
|
153 |
+
def map_to_pred(batch):
|
154 |
+
prediction = asr(batch["audio"]["array"])
|
155 |
+
batch["prediction"] = prediction[0]
|
156 |
+
batch["target"] = normalize_text(batch["sentence"])
|
157 |
+
return batch
|
158 |
+
|
159 |
+
else:
|
160 |
+
# load eval pipeline
|
161 |
+
asr = pipeline("automatic-speech-recognition", model=args.model_id)
|
162 |
+
|
163 |
+
# map function to decode audio
|
164 |
+
def map_to_pred(batch):
|
165 |
+
prediction = asr(
|
166 |
+
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
|
167 |
+
)
|
168 |
+
|
169 |
+
batch["prediction"] = prediction["text"]
|
170 |
+
batch["target"] = normalize_text(batch["sentence"])
|
171 |
+
return batch
|
172 |
+
|
173 |
+
# run inference on all examples
|
174 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
175 |
+
|
176 |
+
# compute and log_results
|
177 |
+
# do not change function below
|
178 |
+
log_results(result, args)
|
179 |
+
|
180 |
+
if args.check_vocab:
|
181 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
|
182 |
+
unk_token = "[UNK]"
|
183 |
+
pad_token = "[PAD]"
|
184 |
+
word_delimiter_token = "|"
|
185 |
+
raw_datasets = DatasetDict({"test": result})
|
186 |
+
vocab_dict = create_vocabulary_from_data(
|
187 |
+
raw_datasets,
|
188 |
+
word_delimiter_token=word_delimiter_token,
|
189 |
+
unk_token=unk_token,
|
190 |
+
pad_token=pad_token,
|
191 |
+
)
|
192 |
+
print(vocab_dict)
|
193 |
+
print("OOV chars:", set(vocab_dict) - set(tokenizer.get_vocab()))
|
194 |
+
|
195 |
+
|
196 |
+
if __name__ == "__main__":
|
197 |
+
parser = argparse.ArgumentParser()
|
198 |
+
|
199 |
+
parser.add_argument(
|
200 |
+
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
|
201 |
+
)
|
202 |
+
parser.add_argument(
|
203 |
+
"--dataset",
|
204 |
+
type=str,
|
205 |
+
required=True,
|
206 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
207 |
+
)
|
208 |
+
parser.add_argument(
|
209 |
+
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
|
210 |
+
)
|
211 |
+
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
|
212 |
+
parser.add_argument(
|
213 |
+
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
|
214 |
+
)
|
215 |
+
parser.add_argument(
|
216 |
+
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
|
217 |
+
)
|
218 |
+
parser.add_argument(
|
219 |
+
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
|
220 |
+
)
|
221 |
+
parser.add_argument(
|
222 |
+
"--check_vocab", action="store_true", help="Verify that normalized target text is within character set"
|
223 |
+
)
|
224 |
+
parser.add_argument(
|
225 |
+
"--use-lm", action="store_true", help="Use kenlm decoder"
|
226 |
+
)
|
227 |
+
args = parser.parse_args()
|
228 |
+
|
229 |
+
main(args)
|