lucas-meyer
commited on
Commit
•
e661171
1
Parent(s):
ef88929
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-xls-r-300m-asr_af-run2
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-xls-r-300m-asr_af-run2
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5239
|
20 |
+
- Wer: 0.3726
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0003
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 2
|
44 |
+
- total_train_batch_size: 32
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 500
|
48 |
+
- num_epochs: 30
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
55 |
+
| 11.7451 | 0.58 | 50 | 7.2710 | 1.0 |
|
56 |
+
| 4.7931 | 1.17 | 100 | 4.0381 | 1.0 |
|
57 |
+
| 3.4944 | 1.75 | 150 | 3.1782 | 1.0 |
|
58 |
+
| 3.06 | 2.34 | 200 | 2.9951 | 1.0 |
|
59 |
+
| 3.0031 | 2.92 | 250 | 2.9964 | 1.0 |
|
60 |
+
| 2.9814 | 3.51 | 300 | 2.9652 | 1.0 |
|
61 |
+
| 2.9524 | 4.09 | 350 | 2.9419 | 0.9998 |
|
62 |
+
| 2.9014 | 4.68 | 400 | 2.8213 | 1.0 |
|
63 |
+
| 2.2569 | 5.26 | 450 | 1.6105 | 0.9433 |
|
64 |
+
| 1.3008 | 5.85 | 500 | 1.0090 | 0.8021 |
|
65 |
+
| 0.8965 | 6.43 | 550 | 0.7727 | 0.6551 |
|
66 |
+
| 0.7134 | 7.02 | 600 | 0.6579 | 0.6102 |
|
67 |
+
| 0.5275 | 7.6 | 650 | 0.5956 | 0.6005 |
|
68 |
+
| 0.4413 | 8.19 | 700 | 0.5558 | 0.5079 |
|
69 |
+
| 0.3582 | 8.77 | 750 | 0.5719 | 0.5459 |
|
70 |
+
| 0.296 | 9.36 | 800 | 0.5389 | 0.4822 |
|
71 |
+
| 0.2557 | 9.94 | 850 | 0.4608 | 0.4541 |
|
72 |
+
| 0.2051 | 10.53 | 900 | 0.4822 | 0.4290 |
|
73 |
+
| 0.1911 | 11.11 | 950 | 0.5035 | 0.4209 |
|
74 |
+
| 0.1635 | 11.7 | 1000 | 0.5319 | 0.4263 |
|
75 |
+
| 0.1582 | 12.28 | 1050 | 0.5075 | 0.4124 |
|
76 |
+
| 0.1387 | 12.87 | 1100 | 0.4759 | 0.4055 |
|
77 |
+
| 0.1251 | 13.45 | 1150 | 0.4925 | 0.3970 |
|
78 |
+
| 0.1164 | 14.04 | 1200 | 0.4933 | 0.3998 |
|
79 |
+
| 0.1052 | 14.62 | 1250 | 0.4587 | 0.3995 |
|
80 |
+
| 0.1023 | 15.2 | 1300 | 0.4863 | 0.3950 |
|
81 |
+
| 0.0918 | 15.79 | 1350 | 0.5114 | 0.3858 |
|
82 |
+
| 0.09 | 16.37 | 1400 | 0.5444 | 0.3940 |
|
83 |
+
| 0.086 | 16.96 | 1450 | 0.5071 | 0.3806 |
|
84 |
+
| 0.0798 | 17.54 | 1500 | 0.4914 | 0.3809 |
|
85 |
+
| 0.0728 | 18.13 | 1550 | 0.5425 | 0.3807 |
|
86 |
+
| 0.0678 | 18.71 | 1600 | 0.5221 | 0.3731 |
|
87 |
+
| 0.0667 | 19.3 | 1650 | 0.5239 | 0.3726 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.28.0
|
93 |
+
- Pytorch 2.0.1+cu118
|
94 |
+
- Datasets 2.14.4
|
95 |
+
- Tokenizers 0.13.3
|