lucabarsellotti commited on
Commit
081a09c
·
1 Parent(s): 821c060

First commit

Browse files
freeda/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .utils.factory import load
freeda/configs/dinov2_vitb_clip_vitb.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ data:
2
+ collection_url: "https://drive.google.com/uc?id=10v1ZbbVjZQhA43F9JWju5chYnPjR2Ael"
3
+ compression: "zip"
4
+ index_url: "https://drive.google.com/uc?id=1AHE6YpY7sGQGp_wPetcr5-z8mk91kWtF"
5
+ collection_length: 2166945
6
+ clip:
7
+ model: ViT-B-16
8
+ weights: openai
9
+ templates:
10
+ - "itap of a {}."
11
+ - "a bad photo of a {}."
12
+ - "a origami {}."
13
+ - "a photo of the large {}."
14
+ - "a {} in a video game."
15
+ - "art of the {}."
16
+ - "a photo of the small {}."
17
+
18
+ backbone:
19
+ model: "vit_base_patch14_dinov2.lvd142m"
20
+ img_size: 518
21
+ mask_proposer:
22
+ use_mask_proposals: true
23
+ method: "superpixel"
24
+ args:
25
+ algorithm: "felzenszwalb"
26
+ scale: 100
27
+ sigma: 1.0
28
+ min_size: 100
29
+ freeda:
30
+ global_local_ensemble: 0.8
31
+ k_search: 350
32
+ sliding_window: true
33
+ with_background: false
34
+ background_threshold: 0.48
freeda/configs/dinov2_vitl_clip_vitl.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ data:
2
+ collection_url: "https://drive.google.com/uc?id=1U4d0exJuq29b0rLR6iOT20ErW3DAmgw0"
3
+ compression: "tar"
4
+ index_url: "https://drive.google.com/uc?id=1FHjpM0aqPf9OjiuG_341EMlEuq6hsh6L"
5
+ collection_length: 2166946
6
+ clip:
7
+ model: ViT-L-14
8
+ weights: openai
9
+ templates:
10
+ - "itap of a {}."
11
+ - "a bad photo of a {}."
12
+ - "a origami {}."
13
+ - "a photo of the large {}."
14
+ - "a {} in a video game."
15
+ - "art of the {}."
16
+ - "a photo of the small {}."
17
+
18
+ backbone:
19
+ model: "vit_large_patch14_dinov2.lvd142m"
20
+ img_size: 518
21
+ mask_proposer:
22
+ use_mask_proposals: true
23
+ method: "superpixel"
24
+ args:
25
+ algorithm: "felzenszwalb"
26
+ scale: 100
27
+ sigma: 1.0
28
+ min_size: 100
29
+ freeda:
30
+ global_local_ensemble: 0.8
31
+ k_search: 350
32
+ sliding_window: true
33
+ with_background: false
34
+ background_threshold: 0.48
freeda/configs/dinov2_vitl_clip_vitl_approx.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ data:
2
+ collection_url: "https://drive.google.com/uc?id=1U4d0exJuq29b0rLR6iOT20ErW3DAmgw0"
3
+ compression: "tar"
4
+ index_url: "https://drive.google.com/uc?id=1LGBnwu8g2PDzIlgyd7gLqkD02wS9r8Hp"
5
+ collection_length: 2166946
6
+ clip:
7
+ model: ViT-L-14
8
+ weights: openai
9
+ templates:
10
+ - "itap of a {}."
11
+ - "a bad photo of a {}."
12
+ - "a origami {}."
13
+ - "a photo of the large {}."
14
+ - "a {} in a video game."
15
+ - "art of the {}."
16
+ - "a photo of the small {}."
17
+ backbone:
18
+ model: "vit_large_patch14_dinov2.lvd142m"
19
+ img_size: 518
20
+ mask_proposer:
21
+ use_mask_proposals: true
22
+ method: "superpixel"
23
+ args:
24
+ algorithm: "felzenszwalb"
25
+ scale: 100
26
+ sigma: 1.0
27
+ min_size: 100
28
+ freeda:
29
+ global_local_ensemble: 0.8
30
+ k_search: 350
31
+ ef_search: 4096
32
+ sliding_window: true
33
+ with_background: false
34
+ background_threshold: 0.5
freeda/models/freeda_model.py ADDED
@@ -0,0 +1,519 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import open_clip
3
+ import faiss
4
+ import os
5
+ import numpy as np
6
+ from math import sqrt, ceil
7
+ from PIL import Image
8
+ from torchvision.transforms import Compose, Resize
9
+ from torchvision.transforms.functional import pil_to_tensor
10
+ from torch.nn.functional import interpolate
11
+ from freeda.models.vision_backbone import VisionBackbone
12
+
13
+ class FreeDA(torch.nn.Module):
14
+ def __init__(self, config: dict,
15
+ lazy_init: bool = True,
16
+ collection_in_gpu: bool = False,
17
+ collection_path: str = None,
18
+ index_path: str = None,
19
+ use_cached_embeddings: bool = True,
20
+ cache_embeddings: bool = True,
21
+ embeddings_cache_path: str = None,
22
+ device: str = 'cuda',
23
+ verbose: bool = False,
24
+ max_masks_batch: int = 128):
25
+ """
26
+ Initialize the model.
27
+ Args:
28
+ config (dict): The configuration of the model.
29
+ lazy_init (bool): Whether to lazily load the collection.
30
+ collection_in_gpu (bool): Whether to load the faiss retrieval collection in GPU.
31
+ collection_path (str): The path to the collection.
32
+ index_path (str): The path to the index.
33
+ use_cached_embeddings (bool): Whether to use the cached embeddings for the required model.
34
+ cache_embeddings (bool): Whether to cache the embeddings.
35
+ embeddings_cache_path (str): The path to the embeddings cache.
36
+ device (str): The device to use.
37
+ verbose (bool): Whether to print the progress.
38
+ max_masks_batch (int): The maximum number of masks to process at once.
39
+ """
40
+ super(FreeDA, self).__init__()
41
+
42
+ self.clip_model_name = config['clip']['model']
43
+ self.clip_weights = config['clip']['weights']
44
+ self.backbone = VisionBackbone(config['backbone'], device)
45
+ self.collection_path = collection_path
46
+ self.index_path = index_path
47
+ self.collection_in_gpu = collection_in_gpu
48
+ self.lazy_init = lazy_init
49
+ self.use_cached_embeddings = use_cached_embeddings
50
+ self.cache_embeddings = cache_embeddings
51
+ self.embeddings_cache_path = embeddings_cache_path
52
+ self.device = device
53
+ self.verbose = verbose
54
+ self.config = config
55
+ self.max_masks_batch = max_masks_batch
56
+
57
+ self.collection_initialized = False
58
+
59
+ self.ens = self.config['freeda']['global_local_ensemble']
60
+ if "ef_search" in self.config['freeda']:
61
+ self.ef_search = self.config['freeda']['ef_search']
62
+
63
+ self.use_mask_proposer = config['mask_proposer']['use_mask_proposals']
64
+ if self.use_mask_proposer:
65
+ if config['mask_proposer']['method'] == 'superpixel':
66
+ from freeda.models.mask_proposer.superpixel import SuperpixelMaskProposer
67
+ self.mask_proposer = SuperpixelMaskProposer(config['mask_proposer']['args'])
68
+
69
+ self.templates = config['clip']['templates']
70
+ self.sliding_window = config['freeda']['sliding_window']
71
+ self.with_background = config['freeda']['with_background']
72
+ if self.with_background:
73
+ self.background_threshold = config['freeda']['background_threshold']
74
+
75
+ self.initialized = False
76
+ if not lazy_init:
77
+ self.init_collection()
78
+ self.init_clip()
79
+ self.initialized = True
80
+
81
+ def init_collection(self):
82
+ """
83
+ Initialize the collection reading the faiss index and the list of embeddings. Moves the index to GPU if collection_in_gpu is True.
84
+ """
85
+ self.collection_index = faiss.read_index(self.index_path + "faiss_index/knn.index")
86
+ if str(type(self.collection_index)) == "<class 'faiss.swigfaiss.IndexHNSWFlat'>" \
87
+ or str(type(self.collection_index)) == "<class 'faiss.swigfaiss_avx2.IndexHNSWFlat'>":
88
+ print(f"Setting faiss efSearch to {self.ef_search}")
89
+ faiss.ParameterSpace().set_index_parameter(self.collection_index, 'efSearch', self.ef_search)
90
+ self.collection_embeddings = sorted(os.listdir(self.collection_path))
91
+ if self.collection_in_gpu:
92
+ resources = [faiss.StandardGpuResources()]
93
+ self.collection_index = faiss.index_cpu_to_gpu_multiple_py(resources, self.collection_index)
94
+
95
+ @torch.no_grad()
96
+ def init_clip(self):
97
+ """
98
+ Initialize the CLIP model and tokenizer.
99
+ """
100
+ self.clip_model, _, self.clip_image_preprocess = open_clip.create_model_and_transforms(self.clip_model_name,
101
+ pretrained=self.clip_weights,
102
+ device=self.device)
103
+ self.clip_resize_dim = self.clip_image_preprocess.transforms[0].size
104
+ self.clip_image_preprocess = Compose([
105
+ Resize(
106
+ (self.clip_image_preprocess.transforms[0].size, self.clip_image_preprocess.transforms[0].size),
107
+ interpolation=self.clip_image_preprocess.transforms[0].interpolation, antialias=None),
108
+ lambda x: x / 255,
109
+ self.clip_image_preprocess.transforms[4]
110
+ ])
111
+ self.clip_model.eval()
112
+ self.clip_tokenizer = open_clip.get_tokenizer(self.clip_model_name)
113
+
114
+ @torch.no_grad()
115
+ def set_categories(self, categories):
116
+ """
117
+ Set the categories to be used by the model. If use_cached_embeddings is True, it will try to load the embeddings from the cache.
118
+ Otherwise, it will compute the embeddings and cache them if cache_embeddings is True.
119
+ Args:
120
+ categories (list): The list of textual arbitrary categories.
121
+ Return:
122
+ output_prototypes (torch.Tensor): The prototype embeddings. [num_categories, vis_emb_dim]
123
+ output_text_embeddings (torch.Tensor): The text embeddings. [num_categories, txt_emb_dim]
124
+ """
125
+ self.categories = categories
126
+ self.num_categories = len(self.categories) + 1 if self.with_background else len(self.categories)
127
+ num_categories = len(categories)
128
+ already_cached_categories = {}
129
+ not_cached_categories = {}
130
+ if self.use_cached_embeddings:
131
+ for i, category in enumerate(self.categories):
132
+ if os.path.exists(f"{self.embeddings_cache_path}/visual/{category}.npy"):
133
+ already_cached_categories[i] = category
134
+ else:
135
+ not_cached_categories[i] = category
136
+ else:
137
+ not_cached_categories = {i: category for i, category in enumerate(self.categories)}
138
+ if len(not_cached_categories.keys()) != 0:
139
+ if self.lazy_init and not self.initialized:
140
+ self.init_clip()
141
+ self.init_collection()
142
+ self.initialized = True
143
+ num_templates = len(self.templates)
144
+ text = [template.format(category) for category in [v for k, v in not_cached_categories.items()] for template in self.templates]
145
+ tokens = self.clip_tokenizer(text).to(self.device)
146
+ context_length = tokens.shape[-1]
147
+ tokens = tokens.reshape(-1, context_length)
148
+ text_embeddings = self.clip_model.encode_text(tokens)
149
+ text_emb_dim = text_embeddings.shape[-1]
150
+ text_embeddings = text_embeddings.reshape(-1, num_templates, text_emb_dim)
151
+ text_embeddings = text_embeddings.mean(dim=1)
152
+ text_embeddings = text_embeddings / (text_embeddings.norm(dim=-1, keepdim=True) + 1e-6)
153
+ _, indices = self.collection_index.search(text_embeddings.cpu().numpy(), self.config['freeda']['k_search'])
154
+ prototypes = []
155
+ for c in indices:
156
+ category_retrieved_embeddings = []
157
+ for k in c:
158
+ retrieved_embedding = torch.from_numpy(np.load(f"{self.collection_path}/{self.collection_embeddings[k]}"))
159
+ if len(retrieved_embedding.shape) == 1:
160
+ retrieved_embedding = retrieved_embedding.unsqueeze(0)
161
+ category_retrieved_embeddings.append(retrieved_embedding)
162
+ category_retrieved_embeddings = torch.cat(category_retrieved_embeddings, dim=0).to(self.device)
163
+ prototypes.append(category_retrieved_embeddings)
164
+ prototypes = torch.stack(prototypes, dim=0).mean(dim=1)
165
+ prototypes = prototypes / (prototypes.norm(dim=-1, keepdim=True) + 1e-6)
166
+ prototypes_emb_dim = prototypes.shape[-1]
167
+
168
+ if self.cache_embeddings:
169
+ os.makedirs(f"{self.embeddings_cache_path}/visual", exist_ok=True)
170
+ os.makedirs(f"{self.embeddings_cache_path}/textual", exist_ok=True)
171
+ for j, (i, category) in enumerate(not_cached_categories.items()):
172
+ print(f"Caching embeddings for {category}")
173
+ np.save(f"{self.embeddings_cache_path}/visual/{category}.npy", prototypes[j].cpu().numpy())
174
+ np.save(f"{self.embeddings_cache_path}/textual/{category}.npy", text_embeddings[j].cpu().numpy())
175
+ output_prototypes = torch.zeros(num_categories, prototypes_emb_dim, device=self.device)
176
+ output_text_embeddings = torch.zeros(num_categories, text_emb_dim, device=self.device)
177
+ for i, category in already_cached_categories.items():
178
+ if self.verbose:
179
+ print(f"Loading cached embeddings for {category}")
180
+ output_prototypes[i] = torch.tensor(np.load(f"{self.embeddings_cache_path}/visual/{category}.npy"), device=self.device)
181
+ output_text_embeddings[i] = torch.tensor(np.load(f"{self.embeddings_cache_path}/textual/{category}.npy"), device=self.device)
182
+ for i, category in not_cached_categories.items():
183
+ output_prototypes[i] = prototypes[j]
184
+ output_text_embeddings[i] = text_embeddings[j]
185
+ else:
186
+ loaded_prototypes_embeddings = [None for _ in range(num_categories)]
187
+ loaded_text_embeddings = [None for _ in range(num_categories)]
188
+ for i, category in already_cached_categories.items():
189
+ if self.verbose:
190
+ print(f"Loading cached embeddings for {category}")
191
+ loaded_prototypes_embeddings[i] = torch.tensor(np.load(f"{self.embeddings_cache_path}/visual/{category}.npy"), device=self.device)
192
+ loaded_text_embeddings[i] = torch.tensor(np.load(f"{self.embeddings_cache_path}/textual/{category}.npy"), device=self.device)
193
+ output_prototypes = torch.stack(loaded_prototypes_embeddings, dim=0).to(self.device)
194
+ output_text_embeddings = torch.stack(loaded_text_embeddings, dim=0).to(self.device)
195
+
196
+ self.prototype_embeddings = output_prototypes.clone()
197
+ self.text_embeddings = output_text_embeddings.clone()
198
+ return output_prototypes, output_text_embeddings
199
+
200
+ @torch.no_grad()
201
+ def set_images(self, images):
202
+ """
203
+ Set the images to be used by the model and extracts their backbone features, CLIP features and mask proposals.
204
+ If sliding_window is True, it will split the images into windows.
205
+ It also returns the features and the masks if the caller wants to use them for other purposes.
206
+ Args:
207
+ images (list): The list of PIL images.
208
+ Return:
209
+ backbone_features (list): The list of backbone features.[num_images, num_patches_h, num_patches_w, vis_emb_dim]
210
+ clip_features (torch.Tensor): The visual features from the CLIP model. [num_images, txt_emb_dim]
211
+ masks (list): The list of mask proposals. (num_images) x (pred_masks, n_pred_masks, covered_pixels, assigned_masks)
212
+ """
213
+ self.images = images
214
+ self.original_sizes = [image.size for image in images]
215
+ if self.sliding_window:
216
+ new_images = []
217
+ self.window_boxes = []
218
+ for image in images:
219
+ image_windows = self.get_window_boxes(image)
220
+ self.window_boxes.append(image_windows)
221
+ new_images.extend([image.crop(window_box) for window_box in image_windows])
222
+ self.images_pre_sliding = self.images
223
+ self.images = new_images
224
+ backbone_features, clip_features = self.set_backbone_features(self.images)
225
+ masks = self.set_mask_proposals(self.images)
226
+ return backbone_features, clip_features, masks
227
+
228
+ def get_window_boxes(self, image):
229
+ """
230
+ Get the window boxes for the sliding window approach.
231
+ Args:
232
+ image (PIL.Image): The image to split into windows.
233
+ Return:
234
+ window_boxes (list): The list of window boxes coordinates. (x1, y1, x2, y2)
235
+ """
236
+ short_side = min(image.size)
237
+ long_side = max(image.size)
238
+ aspect_ratio = long_side / short_side
239
+ num_windows = ceil(aspect_ratio)
240
+ window_shift = (long_side - short_side) / (num_windows -1) if num_windows > 1 else 0
241
+ window_boxes = []
242
+ current_shift = 0
243
+ for j in range(num_windows):
244
+ if short_side == image.size[0]:
245
+ window_boxes.append((0, round(current_shift), short_side, round(current_shift + short_side)))
246
+ else:
247
+ window_boxes.append((round(current_shift), 0, round(current_shift + short_side), short_side))
248
+ current_shift += window_shift
249
+ return window_boxes
250
+
251
+ @torch.no_grad()
252
+ def get_clip_visual_features(self, images):
253
+ """
254
+ Get the normalized visual features from the CLIP model.
255
+ Args:
256
+ images (list or PIL.Image): The list of PIL images or a single PIL image.
257
+ Return:
258
+ clip_features (torch.Tensor): The visual features from the CLIP model. [num_images, vis_emb_dim]
259
+ """
260
+ if type(images) == list:
261
+ if len(images) == 0:
262
+ raise ValueError("Images list is empty")
263
+ images = [pil_to_tensor(image) for image in images]
264
+ images = [self.clip_image_preprocess(image.unsqueeze(0)).squeeze(0) for image in images]
265
+ images = torch.stack(images, dim=0).to(self.device)
266
+ else:
267
+ images = self.clip_image_preprocess(images)
268
+ clip_features = self.clip_model.encode_image(images)
269
+ clip_features = clip_features / (clip_features.norm(dim=-1, keepdim=True) + 1e-6)
270
+ return clip_features
271
+
272
+ @torch.no_grad()
273
+ def set_backbone_features(self, images):
274
+ """
275
+ Set the backbone features and the CLIP features of the images.
276
+ If the model is lazy or global similarities are required, it will initialize the CLIP model.
277
+ Args:
278
+ images (list): The list of PIL images.
279
+ Return:
280
+ backbone_features (list): The list of backbone features. [num_images, num_patches_h, num_patches_w, vis_emb_dim]
281
+ clip_features (torch.Tensor): The visual features from the CLIP model. [num_images, vis_emb_dim]
282
+ """
283
+ self.backbone_features = self.backbone(images)
284
+ if self.ens != 1.0:
285
+ if self.lazy_init and not self.initialized:
286
+ self.init_clip()
287
+
288
+ self.clip_features = self.get_clip_visual_features(images)
289
+ return self.backbone_features, self.clip_features
290
+
291
+ @torch.no_grad()
292
+ def set_mask_proposals(self, images):
293
+ """
294
+ Set the mask proposals of the images.
295
+ Args:
296
+ images (list): The list of PIL images.
297
+ Return:
298
+ masks (list): The list of mask proposals. (num_images) x (pred_masks, n_pred_masks, covered_pixels, assigned_masks)
299
+ Each mask proposal is composed of the predicted binary masks, the number of predicted masks, the pixels covered by masks and the assigned masks for each pixel.
300
+ pred_masks: [n_pred_masks, h, w] (bool)
301
+ n_pred_masks: int
302
+ covered_pixels: [h, w] (bool)
303
+ assigned_masks: [h, w] (int)
304
+ """
305
+ self.masks = [self.mask_proposer(image, self.device) for image in images] # List of tuples (pred_masks, n_pred_masks, covered_pixels, assigned_masks)
306
+ return self.masks
307
+
308
+ @torch.no_grad()
309
+ def forward(self):
310
+ """
311
+ Forward pass of the model.
312
+ Return:
313
+ masks (list): The list of output segmentation masks. [num_images, h, w] (int)
314
+ """
315
+ patch_similarities = self.compute_patch_similarities(self.backbone_features, self.prototype_embeddings, self.masks)
316
+ region_embeddings_batch = self.region_pooling(self.backbone_features, self.masks)
317
+ region_similarities = self.compute_region_similarities(region_embeddings_batch, self.prototype_embeddings, self.masks)
318
+ global_similarities = self.compute_global_similarities(self.clip_features, self.text_embeddings)
319
+ similarities = self.compute_final_similarities(region_similarities, patch_similarities, global_similarities, self.masks)
320
+ if self.sliding_window:
321
+ similarities = self.merge_sliding_windows(similarities)
322
+ self.images = self.images_pre_sliding
323
+ masks = [similarity.argmax(dim=0) for similarity in similarities]
324
+ return masks
325
+
326
+ @torch.no_grad()
327
+ def merge_sliding_windows(self, similarities):
328
+ """
329
+ Merge the similarities of the sliding windows.
330
+ Args:
331
+ similarities (list): The list of similarities of the sliding windows. [num_windows, num_categories, h, w]
332
+ Return:
333
+ new_similarities (list): The list of merged similarities. [num_images, num_categories, h, w]
334
+ """
335
+ counter = 0
336
+ new_similarities = []
337
+ for original_size, window_boxes in zip(self.original_sizes, self.window_boxes):
338
+ new_similarity = torch.zeros(self.num_categories, original_size[1], original_size[0], device=self.device)
339
+ window_overlaps = torch.zeros(original_size[1], original_size[0], device=self.device)
340
+ for window_box in window_boxes:
341
+ new_similarity[:, window_box[1]:window_box[3], window_box[0]:window_box[2]] += similarities[counter]
342
+ window_overlaps[window_box[1]:window_box[3], window_box[0]:window_box[2]] += 1
343
+ counter += 1
344
+ new_similarity = new_similarity / window_overlaps
345
+ new_similarities.append(new_similarity)
346
+ return new_similarities
347
+
348
+ @torch.no_grad()
349
+ def region_pooling(self, features, masks):
350
+ """
351
+ Perform region pooling to get the region embeddings from the patch-level embeddings and the mask proposals.
352
+ Args:
353
+ features (torch.Tensor): The backbone features. [num_images, num_patches_h, num_patches_w, vis_emb_dim]
354
+ masks (list): The list of mask proposals. (num_images) x (pred_masks, n_pred_masks, covered_pixels, assigned_masks)
355
+ Return:
356
+ region_embeddings_batch (list): The list of normalized region embeddings. [num_images, num_regions, vis_emb_dim]
357
+ """
358
+ region_embeddings_batch = []
359
+ for i in range(len(masks)):
360
+ pred_masks = interpolate(masks[i][0].unsqueeze(1).float(), size=(features.shape[1], features.shape[2]), mode='bilinear', align_corners=True).type(torch.bool).squeeze(1)
361
+ region_embeddings = torch.zeros(pred_masks.shape[0], features.shape[-1], device=self.device)
362
+ for j in range(0, pred_masks.shape[0], self.max_masks_batch):
363
+ r = min(j + self.max_masks_batch, masks[i][1])
364
+ current_region_embeddings = pred_masks[j:r].unsqueeze(-1) * features[i].unsqueeze(0)
365
+ region_embeddings[j:r] = current_region_embeddings.sum(dim=(1, 2)) / pred_masks[j:r].sum(dim=(1, 2)).unsqueeze(-1)
366
+ region_embeddings = region_embeddings / (region_embeddings.norm(dim=-1, keepdim=True) + 1e-6)
367
+ self.masks[i][2][self.masks[i][0][region_embeddings.isnan().sum(-1).bool()].sum(0).bool()] = False # Replace pixels covered by too small regions
368
+ region_embeddings_batch.append(region_embeddings)
369
+ return region_embeddings_batch
370
+
371
+ @torch.no_grad()
372
+ def compute_region_similarities(self, region_embeddings_batch, prototype_embeddings, masks):
373
+ """
374
+ Compute the region local similarities between the region embeddings and the visual prototypes.
375
+ Args:
376
+ region_embeddings_batch (list): The list of region embeddings. [num_images, num_regions, vis_emb_dim]
377
+ prototype_embeddings (torch.Tensor): The prototype embeddings. [num_categories, vis_emb_dim]
378
+ masks (list): The list of mask proposals. (num_images) x (pred_masks, n_pred_masks, covered_pixels, assigned_masks)
379
+ Return:
380
+ similarities (list): The list of region similarities. [num_images, num_categories, h, w]
381
+ """
382
+ similarities = []
383
+ for i in range(len(region_embeddings_batch)):
384
+ output_similarities = torch.zeros(len(self.categories), masks[i][0].shape[1], masks[i][0].shape[2], device=self.device)
385
+ region_embeddings = region_embeddings_batch[i]
386
+ region_similarities = torch.matmul(region_embeddings, prototype_embeddings.T)
387
+ output_similarities[:, masks[i][2]] = region_similarities[masks[i][3]][masks[i][2]].permute(1, 0)
388
+ similarities.append(torch.sigmoid(output_similarities))
389
+ return similarities
390
+
391
+ @torch.no_grad()
392
+ def compute_patch_similarities(self, patch_embeddings, prototype_embeddings, masks):
393
+ """
394
+ Compute the per-patch local similarities between the patch-level embeddings and the visual prototypes.
395
+ Args:
396
+ patch_embeddings (torch.Tensor): The patch-level embeddings. [num_images, num_patches_h, num_patches_w, vis_emb_dim]
397
+ prototype_embeddings (torch.Tensor): The prototype embeddings. [num_categories, vis_emb_dim]
398
+ masks (list): The list of mask proposals.
399
+ Return:
400
+ output_similarities (list): The list of patch similarities. [num_images, num_categories, h, w]
401
+ """
402
+ patch_embeddings = patch_embeddings / (patch_embeddings.norm(dim=-1, keepdim=True) + 1e-6)
403
+ similarities = torch.matmul(patch_embeddings, prototype_embeddings.T)
404
+ similarities = torch.sigmoid(similarities)
405
+ image_sizes = [mask[0].shape[1:] for mask in masks]
406
+ output_similarities = []
407
+ for i, image_size in enumerate(image_sizes):
408
+ output_similarities.append(interpolate(similarities[i].permute(2,0,1).unsqueeze(1), size=image_size, mode='bilinear', align_corners=True).squeeze(1))
409
+ return output_similarities
410
+
411
+ @torch.no_grad()
412
+ def compute_global_similarities(self, clip_features, text_embeddings):
413
+ """
414
+ Compute the global similarities between the CLIP visual features and the text embeddings.
415
+ Args:
416
+ clip_features (torch.Tensor): The visual features from the CLIP model. [num_images, vis_emb_dim]
417
+ text_embeddings (torch.Tensor): The text embeddings. [num_categories, txt_emb_dim]
418
+ Return:
419
+ similarities (list): The list of global similarities. [num_images, num_categories]
420
+ """
421
+ similarities = torch.matmul(clip_features, text_embeddings.T)
422
+ return similarities
423
+
424
+ @torch.no_grad()
425
+ def compute_final_similarities(self, region_similarities, patch_similarities, global_similarities, masks):
426
+ """
427
+ Compute the final similarities by combining the region and patch local similarities with the textual global similarities.
428
+ Args:
429
+ region_similarities (list): The list of region local similarities. [num_images, num_categories, h, w]
430
+ patch_similarities (list): The list of per-patch interpolated local similarities. [num_images, num_categories, h, w]
431
+ global_similarities (list): The list of textual global similarities. [num_images, num_categories]
432
+ masks (list): The list of mask proposals. (num_images) x (pred_masks, n_pred_masks, covered_pixels, assigned_masks)
433
+ Return:
434
+ new_similarities (list): The list of final similarities. [num_images, num_categories, h, w]
435
+ """
436
+ new_similarities = self.replace_covered_pixel_similarities(masks, patch_similarities, region_similarities)
437
+ new_similarities = [self.ens * new_similarities[i] + (1 - self.ens) * global_similarities[i].reshape(-1, 1, 1) for i in range(len(new_similarities))]
438
+ if self.with_background:
439
+ new_similarities = self.add_backgrounds(new_similarities)
440
+ return new_similarities
441
+
442
+ @torch.no_grad()
443
+ def add_backgrounds(self, similarities):
444
+ """
445
+ Add the background class to the similarities by thresholding the maximum similarity of each pixel.
446
+ Args:
447
+ similarities (list): The list of final similarities. [num_images, num_categories, h, w]
448
+ Return:
449
+ similarities (list): The list of final similarities with the background class. [num_images, num_categories + 1, h, w]
450
+ """
451
+ for i in range(len(similarities)):
452
+ background = (similarities[i].max(dim=0).values < self.background_threshold).float().unsqueeze(0)
453
+ similarities[i] = torch.cat([background, similarities[i]], dim=0)
454
+ return similarities
455
+
456
+ @torch.no_grad()
457
+ def replace_covered_pixel_similarities(self, masks, patch_similarities, region_similarities):
458
+ """
459
+ Replace the similarities of the covered pixels by the region similarities.
460
+ Args:
461
+ masks (list): The list of mask proposals. (num_images) x (pred_masks, n_pred_masks, covered_pixels, assigned_masks)
462
+ patch_similarities (list): The list of per-patch interpolated local similarities. [num_images, num_categories, h, w]
463
+ region_similarities (list): The list of region local similarities. [num_images, num_categories, h, w]
464
+ Return:
465
+ output_similarities (list): The list of final similarities. [num_images, num_categories, h, w]
466
+ """
467
+ output_similarities = []
468
+ for i in range(len(masks)):
469
+ tmp_patch_similarities = patch_similarities[i].permute(1, 2, 0)
470
+ tmp_new_similarities = region_similarities[i].permute(1, 2, 0)
471
+ tmp_patch_similarities[masks[i][2]] = tmp_new_similarities[masks[i][2]]
472
+ output_similarities.append(tmp_patch_similarities.permute(2, 0, 1))
473
+ return output_similarities
474
+
475
+ @torch.no_grad()
476
+ def visualize(self, segmentation_masks, output_paths, legend=True):
477
+ """
478
+ Visualize the segmentation masks saving the plots to the provided output paths.
479
+ Args:
480
+ segmentation_masks (list): The list of segmentation masks. [num_images, h, w] (int)
481
+ output_paths (list): The list of output paths. [num_images]
482
+ legend (bool): Whether to add a legend to the plot.
483
+ """
484
+ if len(segmentation_masks) != len(self.images):
485
+ raise ValueError("Number of segmentation masks and images must be the same")
486
+ if len(segmentation_masks) != len(output_paths):
487
+ raise ValueError("Number of segmentation masks and output paths must be the same")
488
+ from skimage.segmentation import find_boundaries
489
+ import random
490
+ import matplotlib.pyplot as plt
491
+ from matplotlib.lines import Line2D
492
+ for i in range(len(segmentation_masks)):
493
+ mask = segmentation_masks[i]
494
+ image = self.images[i]
495
+ h, w = mask.shape
496
+ colored_image = torch.zeros((h, w, 3), dtype=torch.int)
497
+ random_colors = []
498
+ new_categories = ["background"] + self.categories if self.with_background else self.categories
499
+ for index in range(len(new_categories)):
500
+ rand_mask = torch.ones(h, w, 3, dtype=torch.int)
501
+ rand_mask[:,:,-1] = (mask == index) * 255
502
+ random_rgb = [0, 0, 0] if self.with_background and index == 0 else [random.randint(64, 255), random.randint(64, 255), random.randint(64, 255)]
503
+ for j in range(3):
504
+ rand_mask[:,:,j] = torch.ones(h, w, dtype=torch.int) * random_rgb[j] * (mask == index).cpu().int()
505
+ colored_image[(mask == index).cpu()] = rand_mask[(mask == index).cpu()]
506
+ random_colors.append([channel / 255 for channel in random_rgb])
507
+ plt.imshow(image)
508
+ boundaries = find_boundaries(mask.cpu().numpy().astype(np.uint8))
509
+ boundaries_image = np.zeros((h, w, 4), dtype=np.uint8)
510
+ boundaries_image[:,:,3] = boundaries * 255
511
+ plt.imshow(colored_image.numpy(), alpha=0.5)
512
+ plt.imshow(boundaries_image)
513
+ plt.axis('off')
514
+ plt.tight_layout()
515
+ if legend:
516
+ legend_elements = [Line2D([0], [0], color=random_colors[i], lw=4, label=new_categories[i]) for i in range(len(random_colors))]
517
+ plt.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(1, 1))
518
+ plt.savefig(output_paths[i], bbox_inches='tight')
519
+ plt.close()
freeda/models/mask_proposer/superpixel.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import torch
3
+ import numpy as np
4
+ from torchvision.transforms.functional import pil_to_tensor
5
+ from skimage.color import rgb2gray
6
+ from skimage.filters import sobel
7
+ from skimage.measure import regionprops
8
+ from skimage.segmentation import felzenszwalb, slic, quickshift, watershed
9
+
10
+ class SuperpixelMaskProposer:
11
+ def __init__(self, config):
12
+ self.config = config
13
+ self.superpixel_method = config['algorithm']
14
+ self.superpixel_conf = config
15
+ self.superpixel_conf.pop('algorithm')
16
+ if self.superpixel_method == 'seeds':
17
+ self.num_iterations = self.superpixel_conf.pop("num_iterations")
18
+
19
+ def __call__(self, image, device):
20
+ if type(image) != torch.Tensor:
21
+ image = pil_to_tensor(image)
22
+ pred_masks = []
23
+ n_pred_masks = []
24
+ assigned_masks = []
25
+ covered_pixels = torch.ones(image.shape[1], image.shape[2]).type(torch.bool).to(device)
26
+ if self.superpixel_method == "seeds":
27
+ image = image.permute(1, 2, 0).cpu().numpy()
28
+ image = np.ascontiguousarray(image.astype(np.uint8))
29
+ else:
30
+ image = image.permute(1, 2, 0).cpu().numpy() / 255
31
+
32
+ if self.superpixel_method == "felzenszwalb":
33
+ superpixel_mask = felzenszwalb(image, **self.superpixel_conf)
34
+
35
+ elif self.superpixel_method == "slic":
36
+ superpixel_mask = slic(image, **self.superpixel_conf)
37
+
38
+ elif self.superpixel_method == "quickshift":
39
+ superpixel_mask = quickshift(image, **self.superpixel_conf)
40
+
41
+ elif self.superpixel_method == "watershed":
42
+ gradient = sobel(rgb2gray(image))
43
+ superpixel_mask = watershed(gradient, **self.superpixel_conf)
44
+
45
+ elif self.superpixel_method == "seeds":
46
+ superpix_seeds = cv2.ximageproc.createSuperpixelSEEDS(**self.superpixel_conf)
47
+ superpix_seeds.iterate(image, self.num_iterations)
48
+ superpixel_mask = superpix_seeds.getLabels()
49
+ num_superpixels = superpix_seeds.getNumberOfSuperpixels()
50
+ else:
51
+ raise NotImplementedError(f"Superpixel algorithm {self.superpixel_method} not implemented.")
52
+
53
+ if self.superpixel_method == "seeds":
54
+ superpixel_mask_binary = np.array([superpixel_mask == i for i in np.arange(num_superpixels)])
55
+ else:
56
+ superpixel_mask_binary = np.array([superpixel_mask == i for i in np.unique(superpixel_mask)])
57
+ num_superpixel = superpixel_mask_binary.shape[0]
58
+
59
+ pred_masks = torch.from_numpy(superpixel_mask_binary).type(torch.bool).to(device)
60
+ n_pred_masks = num_superpixel
61
+ assigned_masks = torch.from_numpy(superpixel_mask).type(torch.long).to(device)
62
+
63
+ if self.superpixel_method == "watershed":
64
+ assigned_masks = assigned_masks - 1
65
+
66
+ return pred_masks, n_pred_masks, covered_pixels, assigned_masks
freeda/models/vision_backbone.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import timm
3
+ from math import sqrt
4
+ from torchvision.transforms import Compose, Resize
5
+ from torchvision.transforms.functional import pil_to_tensor
6
+
7
+ class VisionBackbone(torch.nn.Module):
8
+ def __init__(self,
9
+ config: dict,
10
+ device: str = 'cuda',
11
+ max_batch_size: int = 16):
12
+ super(VisionBackbone, self).__init__()
13
+ self.backbone_name = config['model']
14
+ self.device = device
15
+ self.model = timm.create_model(
16
+ config['model'],
17
+ pretrained=True,
18
+ img_size=config['img_size'],
19
+ ).to(self.device).eval()
20
+
21
+ data_config = timm.data.resolve_model_data_config(config['model'])
22
+ self.transform = timm.data.create_transform(**data_config, is_training=False)
23
+
24
+ self.transform = Compose([
25
+ Resize((config['img_size'], config['img_size']), antialias=None),
26
+ lambda x: x / 255,
27
+ self.transform.transforms[-1]
28
+ ])
29
+
30
+ self.max_batch_size = max_batch_size
31
+
32
+ @torch.no_grad()
33
+ def forward(self, images):
34
+ if type(images) == list:
35
+ if len(images) == 0:
36
+ raise ValueError("Images list is empty")
37
+ images = [pil_to_tensor(image) for image in images]
38
+ images = [self.transform(image.unsqueeze(0)).squeeze(0) for image in images]
39
+ images = torch.stack(images, dim=0)
40
+ else:
41
+ if images.shape[1] != 3:
42
+ images = images.permute(0, 3, 1, 2)
43
+ images = self.transform(images)
44
+ batch_size = images.shape[0]
45
+ if batch_size < self.max_batch_size:
46
+ features = self.model.forward_features(images.to(self.device))
47
+ else:
48
+ features = []
49
+ for i in range(0, batch_size, self.max_batch_size):
50
+ r = min(i + self.max_batch_size, batch_size)
51
+ features.append(self.model.forward_features(images[i:r].to(self.device)))
52
+ features = torch.cat(features, dim=0)
53
+ num_tokens_side = int(sqrt(features.shape[1] - 1))
54
+ return features[:, 1::, :].reshape(batch_size, num_tokens_side, num_tokens_side, features.shape[-1])
freeda/utils/factory.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import yaml
3
+ import gdown
4
+ import subprocess
5
+ import tarfile
6
+ import zipfile
7
+ from freeda.models.freeda_model import FreeDA
8
+
9
+ def load(model_name: str,
10
+ lazy_init: bool = False,
11
+ collection_in_gpu: bool = False,
12
+ use_cache: bool = True,
13
+ force_cache_download: bool = False,
14
+ collection_path: str = None,
15
+ index_path: str = None,
16
+ use_cached_embeddings: bool = True,
17
+ cache_embeddings: bool = True,
18
+ embeddings_cache_path: str = None,
19
+ verbose: bool = True,
20
+ device: str = 'cuda',
21
+ custom_configs_path: str = None):
22
+ """
23
+ Load the model and its configuration.
24
+ Args:
25
+ model_name (str): The name of the model to load.
26
+ lazy_init (bool): Whether to lazily load the collection.
27
+ collection_in_gpu (bool): Whether to load the collection in GPU.
28
+ use_cache (bool): Whether to use the cache. If False, required data will be downloaded.
29
+ force_cache_dowload (bool): Whether to force dowloading and storing in cache.
30
+ collection_path (str): The path to the collection.
31
+ index_path (str): The path to the index.
32
+ use_cached_embeddings (bool): Whether to use the cached embeddings for the required model.
33
+ cache_embeddings (bool): Whether to cache the embeddings.
34
+ embeddings_cache_path (str): The path to the embeddings cache.
35
+ verbose (bool): Whether to print the progress.
36
+ device (str): The device to use.
37
+ custom_configs_path (str): The path to a directory with custom configurations. If None, uses the default configs.
38
+ Return:
39
+ FreeDA: The FreeDA model.
40
+ """
41
+ if custom_configs_path is None:
42
+ current_path = os.path.dirname(os.path.abspath(__file__))
43
+ configs_path = os.path.join(current_path, '../configs')
44
+ else:
45
+ configs_path = custom_configs_path
46
+ if f"{model_name}.yaml" not in os.listdir(configs_path):
47
+ raise ValueError(f"Model {model_name} not available")
48
+ with open(f"{configs_path}/{model_name}.yaml", 'r') as file:
49
+ config = yaml.load(file, Loader=yaml.FullLoader)
50
+
51
+ cache_root = os.path.expanduser(f"~/.cache/freeda/{model_name}/")
52
+
53
+ new_collection_path = f"{cache_root}prototype_embeddings/" if collection_path is None else collection_path
54
+ os.makedirs(new_collection_path, exist_ok=True)
55
+
56
+ new_index_path = f"{cache_root}index/" if index_path is None else index_path
57
+ os.makedirs(new_index_path, exist_ok=True)
58
+
59
+ if use_cache:
60
+ use_cached_collection = True if len(os.listdir(new_collection_path)) == config['data']['collection_length'] and not force_cache_download else False
61
+ use_cached_index = True if len(os.listdir(new_index_path)) != 0 and not force_cache_download else False
62
+ else:
63
+ use_cached_collection = False
64
+ use_cached_index = False
65
+
66
+ if not use_cached_collection:
67
+ if verbose:
68
+ print("Downloading collection...")
69
+ output_collection_tar = f"{cache_root}prototype_embeddings.tar"
70
+ gdown.download(config['data']['collection_url'], output_collection_tar, quiet=verbose)
71
+ if verbose:
72
+ print("Extracting compressed collection... (it may take a while)")
73
+ if config['data']['compression'] == 'zip':
74
+ with tarfile.open(output_collection_tar, 'r:gz') as tar:
75
+ tar.extractall(new_collection_path)
76
+ elif config['data']['compression'] == 'tar':
77
+ with tarfile.open(output_collection_tar, 'r') as tar:
78
+ tar.extractall(new_collection_path)
79
+ else:
80
+ raise ValueError("Invalid compression format")
81
+ else:
82
+ if verbose:
83
+ print("Using cached collection...")
84
+
85
+ if not use_cached_index:
86
+ if verbose:
87
+ print("Downloading index...")
88
+ output_index_zip = f"{cache_root}faiss_index.zip"
89
+ gdown.download(config['data']['index_url'], output_index_zip, quiet=verbose)
90
+ with zipfile.ZipFile(output_index_zip, 'r') as zip_ref:
91
+ zip_ref.extractall(new_index_path)
92
+ else:
93
+ if verbose:
94
+ print("Using cached index...")
95
+
96
+ if embeddings_cache_path is None and use_cached_embeddings:
97
+ embeddings_cache_path = f"{cache_root}embeddings/"
98
+ elif embeddings_cache_path is not None and use_cached_embeddings:
99
+ embeddings_cache_path = os.path.expanduser(embeddings_cache_path)
100
+
101
+ return FreeDA(config,
102
+ lazy_init=lazy_init,
103
+ collection_in_gpu=collection_in_gpu,
104
+ collection_path=new_collection_path,
105
+ index_path=new_index_path,
106
+ device=device,
107
+ use_cached_embeddings=use_cached_embeddings,
108
+ cache_embeddings=cache_embeddings,
109
+ embeddings_cache_path=embeddings_cache_path,
110
+ verbose=verbose)
111
+
main.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import freeda
2
+ from PIL import Image
3
+ import requests
4
+ from io import BytesIO
5
+
6
+ if __name__ == "__main__":
7
+ fr = freeda.load("dinov2_vitb_clip_vitb")
8
+ response1 = requests.get("https://farm9.staticflickr.com/8306/7926031760_b313dca06a_z.jpg")
9
+ img1 = Image.open(BytesIO(response1.content))
10
+ response2 = requests.get("https://farm3.staticflickr.com/2207/2157810040_4883738d2d_z.jpg")
11
+ img2 = Image.open(BytesIO(response2.content))
12
+ fr.set_categories(["cat", "table", "pen", "keyboard", "toilet", "wall"])
13
+ fr.set_images([img1, img2])
14
+ segmentation = fr()
15
+ fr.visualize(segmentation, ["plot.png", "plot1.png"])
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ faiss==1.8.0
2
+ gdown==5.2.0
3
+ matplotlib==3.9.2
4
+ opencv_python==4.10.0.84
5
+ Pillow==10.4.0
6
+ PyYAML==6.0.2
7
+ Requests==2.32.3
8
+ skimage==0.0
9
+ timm==1.0.9