ltg
/

davda54 commited on
Commit
7f719ea
1 Parent(s): bc4fcf5

Upload 8 files

Browse files
base.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attention_probs_dropout_prob": 0.1,
3
+ "hidden_dropout_prob": 0.1,
4
+ "hidden_size": 768,
5
+ "initializer_range": 0.02,
6
+ "intermediate_size": 2048,
7
+ "max_position_embeddings": 512,
8
+ "position_bucket_size": 32,
9
+ "num_attention_heads": 12,
10
+ "num_hidden_layers": 12,
11
+ "vocab_size": 16384,
12
+ "layer_norm_eps": 1.0e-7
13
+ }
config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LTGBertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_dropout_prob": 0.1,
7
+ "hidden_size": 768,
8
+ "initializer_range": 0.02,
9
+ "intermediate_size": 2048,
10
+ "layer_norm_eps": 1e-07,
11
+ "max_position_embeddings": 512,
12
+ "num_attention_heads": 12,
13
+ "num_hidden_layers": 12,
14
+ "output_all_encoded_layers": true,
15
+ "position_bucket_size": 32,
16
+ "torch_dtype": "float32",
17
+ "transformers_version": "4.26.0",
18
+ "vocab_size": 16384
19
+ }
configuration_ltgbert.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+
3
+
4
+ class LTGBertConfig(PretrainedConfig):
5
+ """Configuration class to store the configuration of a `LTGBertModel`.
6
+ """
7
+ def __init__(
8
+ self,
9
+ vocab_size=50000,
10
+ attention_probs_dropout_prob=0.1,
11
+ hidden_dropout_prob=0.1,
12
+ hidden_size=768,
13
+ intermediate_size=2048,
14
+ max_position_embeddings=512,
15
+ position_bucket_size=32,
16
+ num_attention_heads=12,
17
+ num_hidden_layers=12,
18
+ layer_norm_eps=1.0e-7,
19
+ output_all_encoded_layers=True,
20
+ **kwargs,
21
+ ):
22
+ super().__init__(**kwargs)
23
+
24
+ self.vocab_size = vocab_size
25
+ self.hidden_size = hidden_size
26
+ self.num_hidden_layers = num_hidden_layers
27
+ self.num_attention_heads = num_attention_heads
28
+ self.intermediate_size = intermediate_size
29
+ self.hidden_dropout_prob = hidden_dropout_prob
30
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
31
+ self.max_position_embeddings = max_position_embeddings
32
+ self.output_all_encoded_layers = output_all_encoded_layers
33
+ self.position_bucket_size = position_bucket_size
34
+ self.layer_norm_eps = layer_norm_eps
modeling_ltgbert.py ADDED
@@ -0,0 +1,639 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import absolute_import, division, print_function, unicode_literals
2
+
3
+ import math
4
+ from typing import List, Optional, Tuple, Union
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+ from torch import _softmax_backward_data as _softmax_backward_data
10
+ from torch.utils import checkpoint
11
+
12
+ from configuration_ltgbert import LTGBertConfig
13
+ from transformers.modeling_utils import PreTrainedModel
14
+ from transformers.activations import gelu_new
15
+ from transformers.modeling_outputs import (
16
+ MaskedLMOutput,
17
+ MultipleChoiceModelOutput,
18
+ QuestionAnsweringModelOutput,
19
+ SequenceClassifierOutput,
20
+ TokenClassifierOutput,
21
+ BaseModelOutput
22
+ )
23
+
24
+
25
+ class Encoder(nn.Module):
26
+ def __init__(self, config, activation_checkpointing=False):
27
+ super().__init__()
28
+ self.layers = nn.ModuleList([EncoderLayer(config) for _ in range(config.num_hidden_layers)])
29
+
30
+ for i, layer in enumerate(self.layers):
31
+ layer.mlp.mlp[1].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
32
+ layer.mlp.mlp[-2].weight.data *= math.sqrt(1.0 / (2.0 * (1 + i)))
33
+
34
+ self.activation_checkpointing = activation_checkpointing
35
+
36
+ def forward(self, hidden_states, attention_mask, relative_embedding):
37
+ hidden_states, attention_probs = [hidden_states], []
38
+
39
+ for layer in self.layers:
40
+ if self.activation_checkpointing:
41
+ hidden_state, attention_p = checkpoint.checkpoint(layer, hidden_states[-1], attention_mask, relative_embedding)
42
+ else:
43
+ hidden_state, attention_p = layer(hidden_states[-1], attention_mask, relative_embedding)
44
+
45
+ hidden_states.append(hidden_state)
46
+ attention_probs.append(attention_p)
47
+
48
+ return hidden_states, attention_probs
49
+
50
+
51
+ class MaskClassifier(nn.Module):
52
+ def __init__(self, config, subword_embedding):
53
+ super().__init__()
54
+ self.nonlinearity = nn.Sequential(
55
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
56
+ nn.Linear(config.hidden_size, config.hidden_size),
57
+ nn.GELU(),
58
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
59
+ nn.Dropout(config.hidden_dropout_prob),
60
+ nn.Linear(subword_embedding.size(1), subword_embedding.size(0))
61
+ )
62
+ self.initialize(config.hidden_size, subword_embedding)
63
+
64
+ def initialize(self, hidden_size, embedding):
65
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
66
+ nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
67
+ self.nonlinearity[-1].weight = embedding
68
+ self.nonlinearity[1].bias.data.zero_()
69
+ self.nonlinearity[-1].bias.data.zero_()
70
+
71
+ def forward(self, x, masked_lm_labels=None):
72
+ if masked_lm_labels is not None:
73
+ x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
74
+ x = self.nonlinearity(x)
75
+ return x
76
+
77
+
78
+ class EncoderLayer(nn.Module):
79
+ def __init__(self, config):
80
+ super().__init__()
81
+ self.attention = Attention(config)
82
+ self.mlp = FeedForward(config)
83
+
84
+ def forward(self, x, padding_mask, relative_embedding):
85
+ attention_output, attention_probs = self.attention(x, padding_mask, relative_embedding)
86
+ x = x + attention_output
87
+ x = x + self.mlp(x)
88
+ return x, attention_probs
89
+
90
+
91
+ class GeGLU(nn.Module):
92
+ def forward(self, x):
93
+ x, gate = x.chunk(2, dim=-1)
94
+ x = x * gelu_new(gate)
95
+ return x
96
+
97
+
98
+ class FeedForward(nn.Module):
99
+ def __init__(self, config):
100
+ super().__init__()
101
+ self.mlp = nn.Sequential(
102
+ nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False),
103
+ nn.Linear(config.hidden_size, 2*config.intermediate_size, bias=False),
104
+ GeGLU(),
105
+ nn.LayerNorm(config.intermediate_size, eps=config.layer_norm_eps, elementwise_affine=False),
106
+ nn.Linear(config.intermediate_size, config.hidden_size, bias=False),
107
+ nn.Dropout(config.hidden_dropout_prob)
108
+ )
109
+ self.initialize(config.hidden_size)
110
+
111
+ def initialize(self, hidden_size):
112
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
113
+ nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
114
+ nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
115
+
116
+ def forward(self, x):
117
+ return self.mlp(x)
118
+
119
+
120
+ class MaskedSoftmax(torch.autograd.Function):
121
+ @staticmethod
122
+ def forward(self, x, mask, dim):
123
+ self.dim = dim
124
+ x.masked_fill_(mask, float('-inf'))
125
+ x = torch.softmax(x, self.dim)
126
+ x.masked_fill_(mask, 0.0)
127
+ self.save_for_backward(x)
128
+ return x
129
+
130
+ @staticmethod
131
+ def backward(self, grad_output):
132
+ output, = self.saved_tensors
133
+ inputGrad = _softmax_backward_data(grad_output, output, self.dim, output.dtype)
134
+ return inputGrad, None, None
135
+
136
+
137
+ class Attention(nn.Module):
138
+ def __init__(self, config):
139
+ super().__init__()
140
+
141
+ self.config = config
142
+
143
+ if config.hidden_size % config.num_attention_heads != 0:
144
+ raise ValueError(f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}")
145
+
146
+ self.hidden_size = config.hidden_size
147
+ self.num_heads = config.num_attention_heads
148
+ self.head_size = config.hidden_size // config.num_attention_heads
149
+
150
+ self.in_proj_qk = nn.Linear(config.hidden_size, 2*config.hidden_size, bias=True)
151
+ self.in_proj_v = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
152
+ self.out_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
153
+
154
+ self.pre_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False)
155
+ self.post_layer_norm = nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=True)
156
+
157
+ position_indices = torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(1) \
158
+ - torch.arange(config.max_position_embeddings, dtype=torch.long).unsqueeze(0)
159
+ position_indices = self.make_log_bucket_position(position_indices, config.position_bucket_size, config.max_position_embeddings)
160
+ position_indices = config.position_bucket_size - 1 + position_indices
161
+ self.register_buffer("position_indices", position_indices, persistent=True)
162
+
163
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
164
+ self.scale = 1.0 / math.sqrt(3 * self.head_size)
165
+ self.initialize()
166
+
167
+ def make_log_bucket_position(self, relative_pos, bucket_size, max_position):
168
+ sign = torch.sign(relative_pos)
169
+ mid = bucket_size // 2
170
+ abs_pos = torch.where((relative_pos < mid) & (relative_pos > -mid), mid - 1, torch.abs(relative_pos).clamp(max=max_position - 1))
171
+ log_pos = torch.ceil(torch.log(abs_pos / mid) / math.log((max_position-1) / mid) * (mid - 1)).int() + mid
172
+ bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
173
+ return bucket_pos
174
+
175
+ def initialize(self):
176
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
177
+ nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
178
+ nn.init.trunc_normal_(self.in_proj_v.weight, mean=0.0, std=std, a=-2*std, b=2*std)
179
+ nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
180
+ self.in_proj_qk.bias.data.zero_()
181
+ self.in_proj_v.bias.data.zero_()
182
+ self.out_proj.bias.data.zero_()
183
+
184
+ def compute_attention_scores(self, hidden_states, relative_embedding):
185
+ key_len, batch_size, _ = hidden_states.size()
186
+ query_len = key_len
187
+
188
+ if self.position_indices.size(0) < query_len:
189
+ position_indices = torch.arange(query_len, dtype=torch.long).unsqueeze(1) \
190
+ - torch.arange(query_len, dtype=torch.long).unsqueeze(0)
191
+ position_indices = self.make_log_bucket_position(position_indices, self.position_bucket_size, 512)
192
+ position_indices = self.position_bucket_size - 1 + position_indices
193
+ self.position_indices = position_indices.to(hidden_states.device)
194
+
195
+ hidden_states = self.pre_layer_norm(hidden_states)
196
+
197
+ query, key = self.in_proj_qk(hidden_states).chunk(2, dim=2) # shape: [T, B, D]
198
+ key = key * self.scale
199
+ value = self.in_proj_v(hidden_states) # shape: [T, B, D]
200
+
201
+ query = query.reshape(query_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
202
+ key = key.reshape(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
203
+ value = value.view(key_len, batch_size * self.num_heads, self.head_size).transpose(0, 1)
204
+
205
+ attention_scores = torch.bmm(query, key.transpose(1, 2))
206
+
207
+ pos = self.in_proj_qk(self.dropout(relative_embedding)) # shape: [2T-1, 2D]
208
+ pos = pos.view(-1, self.num_heads, 2*self.head_size)
209
+ query_pos, key_pos = pos.chunk(2, dim=2)
210
+ key_pos = key_pos * self.scale
211
+
212
+ query = query.view(batch_size, self.num_heads, query_len, self.head_size)
213
+ key = key.view(batch_size, self.num_heads, key_len, self.head_size)
214
+
215
+ attention_c_p = torch.einsum("bhqd,khd->bhqk", query, key_pos)
216
+ attention_p_c = torch.einsum("bhkd,qhd->bhqk", key, query_pos)
217
+
218
+ position_indices = self.position_indices[:query_len, :key_len].expand(batch_size, self.num_heads, -1, -1)
219
+ attention_c_p = attention_c_p.gather(3, position_indices)
220
+ attention_p_c = attention_p_c.gather(2, position_indices)
221
+
222
+ attention_scores = attention_scores.view(batch_size, self.num_heads, query_len, key_len)
223
+ attention_scores.add_(attention_c_p)
224
+ attention_scores.add_(attention_p_c)
225
+
226
+ return attention_scores, attention_c_p, attention_p_c, value
227
+
228
+ def compute_output(self, attention_probs, value):
229
+ attention_probs = self.dropout(attention_probs)
230
+ context = torch.bmm(attention_probs.flatten(0, 1), value) # shape: [B*H, Q, D]
231
+ context = context.transpose(0, 1).reshape(context.size(1), -1, self.hidden_size) # shape: [Q, B, H*D]
232
+ context = self.out_proj(context)
233
+ context = self.post_layer_norm(context)
234
+ context = self.dropout(context)
235
+ return context
236
+
237
+ def forward(self, hidden_states, attention_mask, relative_embedding):
238
+ attention_scores, value = self.compute_attention_scores(hidden_states, relative_embedding)
239
+ attention_probs = MaskedSoftmax.apply(attention_scores, attention_mask, -1)
240
+ return self.compute_output(attention_probs, value), attention_probs.detach()
241
+
242
+
243
+ class Embedding(nn.Module):
244
+ def __init__(self, config):
245
+ super().__init__()
246
+ self.hidden_size = config.hidden_size
247
+
248
+ self.word_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
249
+ self.word_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=False)
250
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
251
+
252
+ self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
253
+ self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
254
+
255
+ self.initialize()
256
+
257
+ def initialize(self):
258
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
259
+ nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
260
+ nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
261
+
262
+ def forward(self, input_ids):
263
+ word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
264
+ relative_embeddings = self.relative_layer_norm(self.relative_embedding)
265
+ return word_embedding, relative_embeddings
266
+
267
+
268
+ #
269
+ # HuggingFace wrappers
270
+ #
271
+
272
+ class LTGBertPreTrainedModel(PreTrainedModel):
273
+ config_class = LTGBertConfig
274
+ base_model_prefix = "LTG-BERT"
275
+ supports_gradient_checkpointing = True
276
+
277
+ def _set_gradient_checkpointing(self, module, value=False):
278
+ if isinstance(module, Encoder):
279
+ module.activation_checkpointing = value
280
+
281
+ def _init_weights(self, module):
282
+ pass # everything is already initialized
283
+
284
+
285
+ class LTGBertModel(LTGBertPreTrainedModel):
286
+ def __init__(self, config, add_mlm_layer=False):
287
+ super().__init__(config)
288
+ self.config = config
289
+
290
+ self.embedding = Embedding(config)
291
+ self.transformer = Encoder(config, activation_checkpointing=False)
292
+ self.classifier = MaskClassifier(config, self.embedding.word_embedding.weight) if add_mlm_layer else None
293
+
294
+ def get_input_embeddings(self):
295
+ return self.embedding.word_embedding
296
+
297
+ def set_input_embeddings(self, value):
298
+ self.embedding.word_embedding = value
299
+
300
+ def get_contextualized_embeddings(
301
+ self,
302
+ input_ids: Optional[torch.Tensor] = None,
303
+ attention_mask: Optional[torch.Tensor] = None
304
+ ) -> List[torch.Tensor]:
305
+ if input_ids is not None:
306
+ input_shape = input_ids.size()
307
+ else:
308
+ raise ValueError("You have to specify input_ids")
309
+
310
+ batch_size, seq_length = input_shape
311
+ device = input_ids.device
312
+
313
+ if attention_mask is None:
314
+ attention_mask = torch.zeros(batch_size, seq_length, dtype=torch.bool, device=device)
315
+ else:
316
+ attention_mask = ~attention_mask.bool()
317
+ attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
318
+
319
+ static_embeddings, relative_embedding = self.embedding(input_ids.t())
320
+ contextualized_embeddings, attention_probs = self.transformer(static_embeddings, attention_mask, relative_embedding)
321
+ contextualized_embeddings = [e.transpose(0, 1) for e in contextualized_embeddings]
322
+ last_layer = contextualized_embeddings[-1]
323
+ contextualized_embeddings = [contextualized_embeddings[0]] + [
324
+ contextualized_embeddings[i] - contextualized_embeddings[i - 1]
325
+ for i in range(1, len(contextualized_embeddings))
326
+ ]
327
+ return last_layer, contextualized_embeddings, attention_probs
328
+
329
+ def forward(
330
+ self,
331
+ input_ids: Optional[torch.Tensor] = None,
332
+ attention_mask: Optional[torch.Tensor] = None,
333
+ token_type_ids: Optional[torch.Tensor] = None,
334
+ position_ids: Optional[torch.Tensor] = None,
335
+ output_hidden_states: Optional[bool] = None,
336
+ output_attentions: Optional[bool] = None,
337
+ return_dict: Optional[bool] = None,
338
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
339
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
340
+
341
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
342
+
343
+ if not return_dict:
344
+ return sequence_output, contextualized_embeddings, attention_probs
345
+
346
+ return BaseModelOutput(
347
+ last_hidden_state=sequence_output,
348
+ hidden_states=contextualized_embeddings,
349
+ attentions=attention_probs
350
+ )
351
+
352
+
353
+ class LTGBertForMaskedLM(LTGBertModel):
354
+ _keys_to_ignore_on_load_unexpected = ["head"]
355
+
356
+ def __init__(self, config):
357
+ super().__init__(config, add_mlm_layer=True)
358
+
359
+ def get_output_embeddings(self):
360
+ return self.classifier.nonlinearity[-1].weight
361
+
362
+ def set_output_embeddings(self, new_embeddings):
363
+ self.classifier.nonlinearity[-1].weight = new_embeddings
364
+
365
+ def forward(
366
+ self,
367
+ input_ids: Optional[torch.Tensor] = None,
368
+ attention_mask: Optional[torch.Tensor] = None,
369
+ token_type_ids: Optional[torch.Tensor] = None,
370
+ position_ids: Optional[torch.Tensor] = None,
371
+ output_hidden_states: Optional[bool] = None,
372
+ output_attentions: Optional[bool] = None,
373
+ return_dict: Optional[bool] = None,
374
+ labels: Optional[torch.LongTensor] = None,
375
+ ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
376
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
377
+
378
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
379
+ subword_prediction = self.classifier(sequence_output)
380
+ subword_prediction[:, :, :106+1] = float("-inf")
381
+
382
+ masked_lm_loss = None
383
+ if labels is not None:
384
+ masked_lm_loss = F.cross_entropy(subword_prediction.flatten(0, 1), labels.flatten())
385
+
386
+ if not return_dict:
387
+ output = (subword_prediction, contextualized_embeddings, attention_probs)
388
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
389
+
390
+ return MaskedLMOutput(
391
+ loss=masked_lm_loss,
392
+ logits=subword_prediction,
393
+ hidden_states=contextualized_embeddings,
394
+ attentions=attention_probs
395
+ )
396
+
397
+
398
+ class Classifier(nn.Module):
399
+ def __init__(self, config, num_labels: int):
400
+ super().__init__()
401
+
402
+ drop_out = getattr(config, "cls_dropout", None)
403
+ drop_out = config.hidden_dropout_prob if drop_out is None else drop_out
404
+
405
+ self.nonlinearity = nn.Sequential(
406
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
407
+ nn.Linear(config.hidden_size, config.hidden_size),
408
+ nn.GELU(),
409
+ nn.LayerNorm(config.hidden_size, config.layer_norm_eps, elementwise_affine=False),
410
+ nn.Dropout(drop_out),
411
+ nn.Linear(config.hidden_size, num_labels)
412
+ )
413
+ self.initialize(config.hidden_size)
414
+
415
+ def initialize(self, hidden_size):
416
+ std = math.sqrt(2.0 / (5.0 * hidden_size))
417
+ nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
418
+ nn.init.trunc_normal_(self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
419
+ self.nonlinearity[1].bias.data.zero_()
420
+ self.nonlinearity[-1].bias.data.zero_()
421
+
422
+ def forward(self, x):
423
+ x = self.nonlinearity(x)
424
+ return x
425
+
426
+
427
+ class LTGBertForSequenceClassification(LTGBertModel):
428
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
429
+ _keys_to_ignore_on_load_missing = ["head"]
430
+
431
+ def __init__(self, config):
432
+ super().__init__(config, add_mlm_layer=False)
433
+
434
+ self.num_labels = config.num_labels
435
+ self.head = Classifier(config, self.num_labels)
436
+
437
+ def forward(
438
+ self,
439
+ input_ids: Optional[torch.Tensor] = None,
440
+ attention_mask: Optional[torch.Tensor] = None,
441
+ token_type_ids: Optional[torch.Tensor] = None,
442
+ position_ids: Optional[torch.Tensor] = None,
443
+ output_attentions: Optional[bool] = None,
444
+ output_hidden_states: Optional[bool] = None,
445
+ return_dict: Optional[bool] = None,
446
+ labels: Optional[torch.LongTensor] = None,
447
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
448
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
449
+
450
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
451
+ logits = self.head(sequence_output[:, 0, :])
452
+
453
+ loss = None
454
+ if labels is not None:
455
+ if self.config.problem_type is None:
456
+ if self.num_labels == 1:
457
+ self.config.problem_type = "regression"
458
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
459
+ self.config.problem_type = "single_label_classification"
460
+ else:
461
+ self.config.problem_type = "multi_label_classification"
462
+
463
+ if self.config.problem_type == "regression":
464
+ loss_fct = nn.MSELoss()
465
+ if self.num_labels == 1:
466
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
467
+ else:
468
+ loss = loss_fct(logits, labels)
469
+ elif self.config.problem_type == "single_label_classification":
470
+ loss_fct = nn.CrossEntropyLoss()
471
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
472
+ elif self.config.problem_type == "multi_label_classification":
473
+ loss_fct = nn.BCEWithLogitsLoss()
474
+ loss = loss_fct(logits, labels)
475
+
476
+ if not return_dict:
477
+ output = (logits, contextualized_embeddings, attention_probs)
478
+ return ((loss,) + output) if loss is not None else output
479
+
480
+ return SequenceClassifierOutput(
481
+ loss=loss,
482
+ logits=logits,
483
+ hidden_states=contextualized_embeddings,
484
+ attentions=attention_probs
485
+ )
486
+
487
+
488
+ class LTGBertForTokenClassification(LTGBertModel):
489
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
490
+ _keys_to_ignore_on_load_missing = ["head"]
491
+
492
+ def __init__(self, config):
493
+ super().__init__(config, add_mlm_layer=False)
494
+
495
+ self.num_labels = config.num_labels
496
+ self.head = Classifier(config, self.num_labels)
497
+
498
+ def forward(
499
+ self,
500
+ input_ids: Optional[torch.Tensor] = None,
501
+ attention_mask: Optional[torch.Tensor] = None,
502
+ token_type_ids: Optional[torch.Tensor] = None,
503
+ position_ids: Optional[torch.Tensor] = None,
504
+ output_attentions: Optional[bool] = None,
505
+ output_hidden_states: Optional[bool] = None,
506
+ return_dict: Optional[bool] = None,
507
+ labels: Optional[torch.LongTensor] = None,
508
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
509
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
510
+
511
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
512
+ logits = self.head(sequence_output)
513
+
514
+ loss = None
515
+ if labels is not None:
516
+ loss_fct = nn.CrossEntropyLoss()
517
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
518
+
519
+ if not return_dict:
520
+ output = (logits, contextualized_embeddings, attention_probs)
521
+ return ((loss,) + output) if loss is not None else output
522
+
523
+ return TokenClassifierOutput(
524
+ loss=loss,
525
+ logits=logits,
526
+ hidden_states=contextualized_embeddings,
527
+ attentions=attention_probs
528
+ )
529
+
530
+
531
+ class LTGBertForQuestionAnswering(LTGBertModel):
532
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
533
+ _keys_to_ignore_on_load_missing = ["head"]
534
+
535
+ def __init__(self, config):
536
+ super().__init__(config, add_mlm_layer=False)
537
+
538
+ self.num_labels = config.num_labels
539
+ self.head = Classifier(config, self.num_labels)
540
+
541
+ def forward(
542
+ self,
543
+ input_ids: Optional[torch.Tensor] = None,
544
+ attention_mask: Optional[torch.Tensor] = None,
545
+ token_type_ids: Optional[torch.Tensor] = None,
546
+ position_ids: Optional[torch.Tensor] = None,
547
+ output_attentions: Optional[bool] = None,
548
+ output_hidden_states: Optional[bool] = None,
549
+ return_dict: Optional[bool] = None,
550
+ start_positions: Optional[torch.Tensor] = None,
551
+ end_positions: Optional[torch.Tensor] = None
552
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
553
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
554
+
555
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(input_ids, attention_mask)
556
+ logits = self.head(sequence_output)
557
+
558
+ start_logits, end_logits = logits.split(1, dim=-1)
559
+ start_logits = start_logits.squeeze(-1).contiguous()
560
+ end_logits = end_logits.squeeze(-1).contiguous()
561
+
562
+ total_loss = None
563
+ if start_positions is not None and end_positions is not None:
564
+ # If we are on multi-GPU, split add a dimension
565
+ if len(start_positions.size()) > 1:
566
+ start_positions = start_positions.squeeze(-1)
567
+ if len(end_positions.size()) > 1:
568
+ end_positions = end_positions.squeeze(-1)
569
+
570
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
571
+ ignored_index = start_logits.size(1)
572
+ start_positions = start_positions.clamp(0, ignored_index)
573
+ end_positions = end_positions.clamp(0, ignored_index)
574
+
575
+ loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
576
+ start_loss = loss_fct(start_logits, start_positions)
577
+ end_loss = loss_fct(end_logits, end_positions)
578
+ total_loss = (start_loss + end_loss) / 2
579
+
580
+ if not return_dict:
581
+ output = start_logits, end_logits, contextualized_embeddings, attention_probs
582
+ return ((total_loss,) + output) if total_loss is not None else output
583
+
584
+ return QuestionAnsweringModelOutput(
585
+ loss=total_loss,
586
+ start_logits=start_logits,
587
+ end_logits=end_logits,
588
+ hidden_states=contextualized_embeddings,
589
+ attentions=attention_probs,
590
+ )
591
+
592
+
593
+ class LTGBertForMultipleChoice(LTGBertModel):
594
+ _keys_to_ignore_on_load_unexpected = ["classifier"]
595
+ _keys_to_ignore_on_load_missing = ["head"]
596
+
597
+ def __init__(self, config):
598
+ super().__init__(config, add_mlm_layer=False)
599
+
600
+ self.num_labels = getattr(config, "num_labels", 2)
601
+ self.head = Classifier(config, self.num_labels)
602
+
603
+ def forward(
604
+ self,
605
+ input_ids: Optional[torch.Tensor] = None,
606
+ attention_mask: Optional[torch.Tensor] = None,
607
+ token_type_ids: Optional[torch.Tensor] = None,
608
+ position_ids: Optional[torch.Tensor] = None,
609
+ labels: Optional[torch.Tensor] = None,
610
+ return_dict: Optional[bool] = None,
611
+ start_positions: Optional[torch.Tensor] = None,
612
+ end_positions: Optional[torch.Tensor] = None
613
+ ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
614
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
615
+ num_choices = input_ids.shape[1]
616
+
617
+ flat_input_ids = input_ids.view(-1, input_ids.size(-1))
618
+ flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
619
+
620
+ sequence_output, contextualized_embeddings, attention_probs = self.get_contextualized_embeddings(flat_input_ids, flat_attention_mask)
621
+ logits = self.head(sequence_output)
622
+ reshaped_logits = logits.view(-1, num_choices)
623
+
624
+ loss = None
625
+ if labels is not None:
626
+ loss_fct = nn.CrossEntropyLoss()
627
+ loss = loss_fct(reshaped_logits, labels)
628
+
629
+ if not return_dict:
630
+ output = (reshaped_logits, contextualized_embeddings, attention_probs)
631
+ return ((loss,) + output) if loss is not None else output
632
+
633
+ return MultipleChoiceModelOutput(
634
+ loss=loss,
635
+ logits=reshaped_logits,
636
+ hidden_states=contextualized_embeddings,
637
+ attentions=attention_probs,
638
+ )
639
+
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:820ee7f7fdb806b0ce34758331cc6efb0f8b8bc4ba988d507386e5dfd3ef30a1
3
+ size 418130297
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "[BOS]", "eos_token": "[EOS]", "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "model_max_length": 1000000000000000019884624838656,
3
+ "tokenizer_class": "PreTrainedTokenizerFast"
4
+ }