|
|
from typing import List, Optional, Tuple, Union |
|
|
import torch |
|
|
import inspect |
|
|
from diffusers import DDIMScheduler, DiffusionPipeline, ImagePipelineOutput |
|
|
|
|
|
class CondDDIMPipeline(DiffusionPipeline): |
|
|
r""" |
|
|
Pipeline for image generation. |
|
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
|
|
Parameters: |
|
|
unet ([`UNet2DModel`]): |
|
|
A `UNet2DModel` to denoise the encoded image latents. |
|
|
scheduler ([`SchedulerMixin`]): |
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of |
|
|
[`DDPMScheduler`], or [`DDIMScheduler`]. |
|
|
""" |
|
|
|
|
|
model_cpu_offload_seq = "unet" |
|
|
|
|
|
def __init__(self, unet, scheduler): |
|
|
super().__init__() |
|
|
|
|
|
scheduler = DDIMScheduler.from_config(scheduler.config) |
|
|
|
|
|
self.register_modules(unet=unet, scheduler=scheduler) |
|
|
|
|
|
@torch.no_grad() |
|
|
def __call__( |
|
|
self, |
|
|
batch_size: int = 1, |
|
|
image: torch.Tensor = None, |
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
|
num_images_per_cond: Optional[int] = 1, |
|
|
eta: float = 0.0, |
|
|
num_inference_steps: int = 50, |
|
|
use_clipped_model_output: Optional[bool] = None, |
|
|
output_type: Optional[str] = "pil", |
|
|
return_dict: bool = True, |
|
|
) -> Union[ImagePipelineOutput, Tuple]: |
|
|
r""" |
|
|
The call function to the pipeline for generation. |
|
|
|
|
|
Args: |
|
|
batch_size (`int`, *optional*, defaults to 1): |
|
|
The number of images to generate. |
|
|
image (torch.Tensor): |
|
|
The LR image(s) to condition on. |
|
|
generator (`torch.Generator`, *optional*): |
|
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
|
generation deterministic. |
|
|
eta (`float`, *optional*, defaults to 0.0): |
|
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. A value of `0` corresponds to |
|
|
DDIM and `1` corresponds to DDPM. |
|
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
|
expense of slower inference. |
|
|
use_clipped_model_output (`bool`, *optional*, defaults to `None`): |
|
|
If `True` or `False`, see documentation for [`DDIMScheduler.step`]. If `None`, nothing is passed |
|
|
downstream to the scheduler (use `None` for schedulers which don't support this argument). |
|
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
|
""" |
|
|
|
|
|
|
|
|
bs, _, height, width = image.shape |
|
|
|
|
|
|
|
|
generator = torch.Generator(device=self._execution_device) |
|
|
|
|
|
latents_shape = (bs * num_images_per_cond, self.unet.config.out_channels, height, width) |
|
|
|
|
|
latents = torch.randn(latents_shape, generator=generator, device=self._execution_device, dtype=self.unet.dtype) |
|
|
latents_dtype = next(self.unet.parameters()).dtype |
|
|
|
|
|
|
|
|
image = torch.cat([image] * num_images_per_cond) |
|
|
image = image.to(device=self.device, dtype=latents_dtype) |
|
|
|
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
|
extra_kwargs = {} |
|
|
if accepts_eta: |
|
|
extra_kwargs["eta"] = eta |
|
|
|
|
|
for t in self.progress_bar(self.scheduler.timesteps): |
|
|
|
|
|
|
|
|
latents_input = torch.cat([latents, image], dim=1) |
|
|
latents_input = self.scheduler.scale_model_input(latents_input, t) |
|
|
|
|
|
noise_pred = self.unet(latents_input, t).sample |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
latents = self.scheduler.step( |
|
|
noise_pred, t, latents, eta=eta, use_clipped_model_output=use_clipped_model_output, generator=generator |
|
|
).prev_sample |
|
|
|
|
|
|
|
|
image = latents.cpu().numpy() |
|
|
if output_type == "pil": |
|
|
image = self.numpy_to_pil(image) |
|
|
|
|
|
if not return_dict: |
|
|
return (image,) |
|
|
|
|
|
return ImagePipelineOutput(images=image) |
|
|
|