Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +107 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1897.28 +/- 250.91
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:849bb3fab82b28aed03aae47c2e8d8a6e9766cd60eafaad9c05849a7c10253f3
|
3 |
+
size 129248
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f26a03d8790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f26a03d8820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f26a03d88b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f26a03d8940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f26a03d89d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f26a03d8a60>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f26a03d8af0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f26a03d8b80>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f26a03d8c10>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f26a03d8ca0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f26a03d8d30>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f26a03d8dc0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f26a03d2740>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1684257615452367392,
|
41 |
+
"learning_rate": 0.00096,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGLppL9m/s4/vyRuvyztGL+UzoU/fUv/PqruhD3lxWI9aCxLv17EsD+ZnT2/mIECPiBn1j7Uk4g/ohsqPzIgBLzhjqs/XK6qP/nHfj+t9cO9DizcvgQ9SD+scr2+c1qCPeeGhL8zkzY/zVX8v+wjhj+tU6E/58IMPkjoCz8C7cM/S5KSP2gIbz+wmS2//MlKv9UfBj+Pc94+HniHPxEX/z6N2Sg/JUuuv9hUFj9g1k2+JtCTupE4mr+RP26/OgOiPy61J7/vtGw8vK9pP9XJFsBdQXc/F3qzv+nbAT8RSHS/ASMxPwePEr+tc/U+SKlcP8l1Cj8AxsI9yYvEvkI74L16Too++AG+vReHLb86WtU+XG+Bvfz4hj9EljW+o4vePipAhj9iGds/4Uk7v9Qug75Hdgq/PSY2v/NDnT+rt54954aEvzOTNj/NVfy/7COGP/JLlD85+ry/+bCbvgXkmD3Z5YA/V0OsP+w6G76oMAQ+csIbvlZhKMDBdSS/ZKwpP+oXiDyTXq6++iA9v/XIJj8rIKE/BejWvjYNgL8IPYa/sr8FP6rU779tzJw/Bo7QveeGhL8zkzY/zVX8v+wjhj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": {
|
56 |
+
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAVlm21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAn5USvgAAAACN2/O/AAAAAGK9Pb0AAAAAt63jPwAAAACjehK9AAAAAJku3T8AAAAA3WzOPQAAAAAGStu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFKu2NAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBlJ2T0AAAAA/c/7vwAAAACfa/I9AAAAAKaB5j8AAAAAWNaHPQAAAAAFDvs/AAAAAMv0jj0AAAAA+sjpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoKuDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBmxQm9AAAAABJE978AAAAAUYEAPgAAAABiUvo/AAAAAAThpLwAAAAArFrqPwAAAABgk6w9AAAAAAGn7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/dGi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyOVcuQAAAAAbL+i/AAAAAHmcMj0AAAAAp4v5PwAAAADBdXm9AAAAALfZ+j8AAAAApKMAPgAAAADwNOe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
+
},
|
59 |
+
"_episode_num": 0,
|
60 |
+
"use_sde": true,
|
61 |
+
"sde_sample_freq": -1,
|
62 |
+
"_current_progress_remaining": 0.0,
|
63 |
+
"_stats_window_size": 100,
|
64 |
+
"ep_info_buffer": {
|
65 |
+
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrDFcTrVvyMAWyUTegDjAF0lEdAqn7iRlpXZHV9lChoBkdAlJNyed07sGgHTegDaAhHQKqABVWCEpR1fZQoaAZHQJnAZJiAlOZoB03oA2gIR0Cqgi6Qmu1XdX2UKGgGR0CWGfUD+zdDaAdN6ANoCEdAqorU6YE4enV9lChoBkdAmC4W0AtFrmgHTegDaAhHQKqK/3OfNA11fZQoaAZHQJblx0nw5NpoB03oA2gIR0CqjCxcNYr8dX2UKGgGR0CUujpjc2zfaAdN6ANoCEdAqo5q0QbuMXV9lChoBkdAkc5iSFGoaWgHTegDaAhHQKqa9yHVPN51fZQoaAZHQJZJrnNgSe1oB03oA2gIR0CqmyMEaESNdX2UKGgGR0CWnnlSjxkNaAdN6ANoCEdAqpw/CyhSL3V9lChoBkdAlOedqUNayWgHTegDaAhHQKqeaIbfgrJ1fZQoaAZHQJpLeHXVbzNoB03oA2gIR0CqpxWLP2PDdX2UKGgGR0Cd9NkD6nBMaAdN6ANoCEdAqqdA2sJY1nV9lChoBkdAnGvDdk8RtmgHTegDaAhHQKqoZ+iJwbV1fZQoaAZHQJik3wkPcztoB03oA2gIR0Cqqp3mNipedX2UKGgGR0Caw8dmg8KYaAdN6ANoCEdAqrV/ovBacXV9lChoBkdAmGZ3QY1pCmgHTegDaAhHQKq1w2Yv38J1fZQoaAZHQJqf1TZQHiZoB03oA2gIR0Cqt3+1rqMWdX2UKGgGR0CbN3dv863iaAdN6ANoCEdAqrpUauOjqXV9lChoBkdAiyWIQe3hGmgHTf4BaAhHQKq9M92X9it1fZQoaAZHQJ+cVKXfIjpoB03oA2gIR0CqwwYM4LkTdX2UKGgGR0CZzCLgGbCraAdN6ANoCEdAqsRTSRbKR3V9lChoBkdAlwoepKjBVWgHTegDaAhHQKrGiFY+0PZ1fZQoaAZHQJskIX3xnWdoB03oA2gIR0CqyW9Htnf3dX2UKGgGR0CamHccU/OdaAdN6ANoCEdAqtBBzaK1onV9lChoBkdAnM41UQ04zmgHTegDaAhHQKrSMwA2hqV1fZQoaAZHQJkrklE7W/doB03oA2gIR0Cq1azUZvUCdX2UKGgGR0CagJt8NQTFaAdN6ANoCEdAqtmKWTot+XV9lChoBkdAhEt3m3fAK2gHTdkBaAhHQKrfYIN3GGV1fZQoaAZHQJdcfRBu4w1oB03oA2gIR0Cq32n3lCC0dX2UKGgGR0CbSXD15B1LaAdN6ANoCEdAquC9aIN3GHV9lChoBkdAk1GFuzhP02gHTegDaAhHQKrjCIWP91l1fZQoaAZHQJve70se4kNoB03oA2gIR0Cq685VwPy1dX2UKGgGR0CQ/du3c580aAdN6ANoCEdAquvYBo24u3V9lChoBkdAkfFJiAlOXWgHTegDaAhHQKrtlnVXmvJ1fZQoaAZHQJzB6ZLIxQBoB03oA2gIR0Cq8L9wFTvRdX2UKGgGR0CWDTMFUyYYaAdN6ANoCEdAqvuFQuVX3nV9lChoBkdAnOBrjtG/e2gHTegDaAhHQKr7jnhbW3B1fZQoaAZHQIs6yIi1RchoB03oA2gIR0Cq/NfW1+iKdX2UKGgGR0CYBAx0+1SgaAdN6ANoCEdAqv8XbO/tY3V9lChoBkdAlIjtvn8sMGgHTegDaAhHQKsHw2sJY1Z1fZQoaAZHQJxJyQRwqAloB03oA2gIR0CrB8w1ivxIdX2UKGgGR0CaZ2iFTNt7aAdN6ANoCEdAqwkWFL39JnV9lChoBkdAm0lxPCVKPGgHTegDaAhHQKsLfWzWwvB1fZQoaAZHQJhp1RWLgoBoB03oA2gIR0CrF5dKmKqGdX2UKGgGR0CZRUuNPxhEaAdN6ANoCEdAqxeguRLbpXV9lChoBkdAnb6Vgx8D0WgHTegDaAhHQKsY8z1schl1fZQoaAZHQJsqU5eZ5RloB03oA2gIR0CrGypWmxdIdX2UKGgGR0Cco7DfFaStaAdN6ANoCEdAqyPqqhlDnnV9lChoBkdAnDvPJmuklGgHTegDaAhHQKsj8zD4xlB1fZQoaAZHQJ1FNmxt52RoB03oA2gIR0CrJTumrKeTdX2UKGgGR0CdKZNKRMewaAdN6ANoCEdAqyd0vXbudHV9lChoBkdAnC/wGOdXk2gHTegDaAhHQKszDvOyE+R1fZQoaAZHQJ0dNfE4vOBoB03oA2gIR0CrMx0sOG0vdX2UKGgGR0CccobVz6rOaAdN6ANoCEdAqzToNRWLgnV9lChoBkdAnk0h0uDjBGgHTegDaAhHQKs3B1klNUR1fZQoaAZHQI5pjdepn6FoB03oA2gIR0CrP6JCBwuNdX2UKGgGR0CaXPS2Yv38aAdN6ANoCEdAqz+uy1NQCXV9lChoBkdAmdVtyDIzWWgHTegDaAhHQKtA80CRwId1fZQoaAZHQJhTHfek56toB03oA2gIR0CrQyC3gDRudX2UKGgGR0Cb4xXWvr4WaAdN6ANoCEdAq01/sXzlLnV9lChoBkdAnNhVlwtJ4GgHTegDaAhHQKtNja37UG51fZQoaAZHQITdD0cwQDpoB03oA2gIR0CrT6fWDpTudX2UKGgGR0CcbmyrgflqaAdN6ANoCEdAq1MXKQq7RXV9lChoBkdAhWwqIJqqO2gHTegDaAhHQKtbtadMCcR1fZQoaAZHQJrEVgLJCBxoB03oA2gIR0CrW79srNGFdX2UKGgGR0CblPqpcX3yaAdN6ANoCEdAq10VRzijtXV9lChoBkdAmzXiUX531WgHTegDaAhHQKtfRhuwX691fZQoaAZHQJn1p7laKUFoB03oA2gIR0CraE85bQkYdX2UKGgGR0B7qHpzLfUGaAdN6ANoCEdAq2hcDdP+GXV9lChoBkdAmlGh19v0iGgHTegDaAhHQKtqMGyHEdh1fZQoaAZHQJxcTSPU8V5oB03oA2gIR0CrbXqTjebedX2UKGgGR0CVRb0/nnuBaAdNXgNoCEdAq3YNbcGke3V9lChoBkdAmeVQC0WuYGgHTegDaAhHQKt3s9Gqgh91fZQoaAZHQJRz02m51/5oB03oA2gIR0CreQ5mAbyZdX2UKGgGR0CBcujeKsMiaAdN6ANoCEdAq3tJ9E1EVnV9lChoBkdAl3Q3mzSkTGgHTegDaAhHQKuCR5prULF1fZQoaAZHQJi82D6Fds1oB03oA2gIR0Crg/SOzY29dX2UKGgGR0CACkS+QEIPaAdN6ANoCEdAq4VC1NQCS3V9lChoBkdAmSXJRfnfVWgHTegDaAhHQKuIM9qUNa11fZQoaAZHQJGEaioKlYVoB03oA2gIR0Crkiy5RTCMdX2UKGgGR0CaTK3/giu/aAdN6ANoCEdAq5PUYIjW1HV9lChoBkdAmlHiyY5T62gHTegDaAhHQKuVJNr0rbx1fZQoaAZHQJf9W5kK/mFoB03oA2gIR0Crl1QXyiEhdX2UKGgGR0CNYtLCemNzaAdN6ANoCEdAq55W2uxKQXV9lChoBkdAnmGoqCpWFWgHTegDaAhHQKuf+JgLJCB1fZQoaAZHQKA8c3sHB1toB03oA2gIR0CroWFEiMYNdX2UKGgGR0CeJqNWEK3NaAdN6ANoCEdAq6OR13dKunV9lChoBkdAnTN6z/p+t2gHTegDaAhHQKutW68QI2R1fZQoaAZHQJ/AOtQsPJ9oB03oA2gIR0CrsAHvc8DCdX2UKGgGR0Cey0aa1Cw9aAdN6ANoCEdAq7FVW0Z3tHV9lChoBkdAnf6VSOzY3GgHTegDaAhHQKuzpTqB3A51fZQoaAZHQJcz2Lehwl1oB03oA2gIR0CrutJJf6XTdX2UKGgGR0CDebJUYKplaAdN6ANoCEdAq7x6lk6LfnV9lChoBkdAkiz0ZiuuBGgHTegDaAhHQKu90WFev6l1fZQoaAZHQJq+kysS00FoB03oA2gIR0CrwAA00m+kdX2UKGgGR0CeqTjd56dEaAdN6ANoCEdAq8iYGW2PUHV9lChoBkdAl/CyPIXCTGgHTegDaAhHQKvLMbutwJh1fZQoaAZHQJtGsxwhnrZoB03oA2gIR0CrzUKfe1rqdX2UKGgGR0Cbi6hPCVKPaAdN6ANoCEdAq9BDNwBHTnVlLg=="
|
67 |
+
},
|
68 |
+
"ep_success_buffer": {
|
69 |
+
":type:": "<class 'collections.deque'>",
|
70 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
71 |
+
},
|
72 |
+
"_n_updates": 62500,
|
73 |
+
"n_steps": 8,
|
74 |
+
"gamma": 0.99,
|
75 |
+
"gae_lambda": 0.9,
|
76 |
+
"ent_coef": 0.0,
|
77 |
+
"vf_coef": 0.4,
|
78 |
+
"max_grad_norm": 0.5,
|
79 |
+
"normalize_advantage": false,
|
80 |
+
"observation_space": {
|
81 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
82 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
83 |
+
"dtype": "float32",
|
84 |
+
"_shape": [
|
85 |
+
28
|
86 |
+
],
|
87 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
88 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
89 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
90 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
91 |
+
"_np_random": null
|
92 |
+
},
|
93 |
+
"action_space": {
|
94 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
95 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
96 |
+
"dtype": "float32",
|
97 |
+
"_shape": [
|
98 |
+
8
|
99 |
+
],
|
100 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
101 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
102 |
+
"bounded_below": "[ True True True True True True True True]",
|
103 |
+
"bounded_above": "[ True True True True True True True True]",
|
104 |
+
"_np_random": null
|
105 |
+
},
|
106 |
+
"n_envs": 4
|
107 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59ae206218154a669d33913edaf4562ba77fc203969d89e506bc8096069c162e
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04a16f9a3cd91eacfb9cd0f65d8e42dea6f9beb0c9bbe82931c8d71006ade063
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f26a03d8790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f26a03d8820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f26a03d88b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f26a03d8940>", "_build": "<function ActorCriticPolicy._build at 0x7f26a03d89d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f26a03d8a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f26a03d8af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f26a03d8b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f26a03d8c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f26a03d8ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f26a03d8d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f26a03d8dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f26a03d2740>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684257615452367392, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGLppL9m/s4/vyRuvyztGL+UzoU/fUv/PqruhD3lxWI9aCxLv17EsD+ZnT2/mIECPiBn1j7Uk4g/ohsqPzIgBLzhjqs/XK6qP/nHfj+t9cO9DizcvgQ9SD+scr2+c1qCPeeGhL8zkzY/zVX8v+wjhj+tU6E/58IMPkjoCz8C7cM/S5KSP2gIbz+wmS2//MlKv9UfBj+Pc94+HniHPxEX/z6N2Sg/JUuuv9hUFj9g1k2+JtCTupE4mr+RP26/OgOiPy61J7/vtGw8vK9pP9XJFsBdQXc/F3qzv+nbAT8RSHS/ASMxPwePEr+tc/U+SKlcP8l1Cj8AxsI9yYvEvkI74L16Too++AG+vReHLb86WtU+XG+Bvfz4hj9EljW+o4vePipAhj9iGds/4Uk7v9Qug75Hdgq/PSY2v/NDnT+rt54954aEvzOTNj/NVfy/7COGP/JLlD85+ry/+bCbvgXkmD3Z5YA/V0OsP+w6G76oMAQ+csIbvlZhKMDBdSS/ZKwpP+oXiDyTXq6++iA9v/XIJj8rIKE/BejWvjYNgL8IPYa/sr8FP6rU779tzJw/Bo7QveeGhL8zkzY/zVX8v+wjhj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAVlm21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAn5USvgAAAACN2/O/AAAAAGK9Pb0AAAAAt63jPwAAAACjehK9AAAAAJku3T8AAAAA3WzOPQAAAAAGStu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFKu2NAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBlJ2T0AAAAA/c/7vwAAAACfa/I9AAAAAKaB5j8AAAAAWNaHPQAAAAAFDvs/AAAAAMv0jj0AAAAA+sjpvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoKuDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBmxQm9AAAAABJE978AAAAAUYEAPgAAAABiUvo/AAAAAAThpLwAAAAArFrqPwAAAABgk6w9AAAAAAGn7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/dGi2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyOVcuQAAAAAbL+i/AAAAAHmcMj0AAAAAp4v5PwAAAADBdXm9AAAAALfZ+j8AAAAApKMAPgAAAADwNOe/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrDFcTrVvyMAWyUTegDjAF0lEdAqn7iRlpXZHV9lChoBkdAlJNyed07sGgHTegDaAhHQKqABVWCEpR1fZQoaAZHQJnAZJiAlOZoB03oA2gIR0Cqgi6Qmu1XdX2UKGgGR0CWGfUD+zdDaAdN6ANoCEdAqorU6YE4enV9lChoBkdAmC4W0AtFrmgHTegDaAhHQKqK/3OfNA11fZQoaAZHQJblx0nw5NpoB03oA2gIR0CqjCxcNYr8dX2UKGgGR0CUujpjc2zfaAdN6ANoCEdAqo5q0QbuMXV9lChoBkdAkc5iSFGoaWgHTegDaAhHQKqa9yHVPN51fZQoaAZHQJZJrnNgSe1oB03oA2gIR0CqmyMEaESNdX2UKGgGR0CWnnlSjxkNaAdN6ANoCEdAqpw/CyhSL3V9lChoBkdAlOedqUNayWgHTegDaAhHQKqeaIbfgrJ1fZQoaAZHQJpLeHXVbzNoB03oA2gIR0CqpxWLP2PDdX2UKGgGR0Cd9NkD6nBMaAdN6ANoCEdAqqdA2sJY1nV9lChoBkdAnGvDdk8RtmgHTegDaAhHQKqoZ+iJwbV1fZQoaAZHQJik3wkPcztoB03oA2gIR0Cqqp3mNipedX2UKGgGR0Caw8dmg8KYaAdN6ANoCEdAqrV/ovBacXV9lChoBkdAmGZ3QY1pCmgHTegDaAhHQKq1w2Yv38J1fZQoaAZHQJqf1TZQHiZoB03oA2gIR0Cqt3+1rqMWdX2UKGgGR0CbN3dv863iaAdN6ANoCEdAqrpUauOjqXV9lChoBkdAiyWIQe3hGmgHTf4BaAhHQKq9M92X9it1fZQoaAZHQJ+cVKXfIjpoB03oA2gIR0CqwwYM4LkTdX2UKGgGR0CZzCLgGbCraAdN6ANoCEdAqsRTSRbKR3V9lChoBkdAlwoepKjBVWgHTegDaAhHQKrGiFY+0PZ1fZQoaAZHQJskIX3xnWdoB03oA2gIR0CqyW9Htnf3dX2UKGgGR0CamHccU/OdaAdN6ANoCEdAqtBBzaK1onV9lChoBkdAnM41UQ04zmgHTegDaAhHQKrSMwA2hqV1fZQoaAZHQJkrklE7W/doB03oA2gIR0Cq1azUZvUCdX2UKGgGR0CagJt8NQTFaAdN6ANoCEdAqtmKWTot+XV9lChoBkdAhEt3m3fAK2gHTdkBaAhHQKrfYIN3GGV1fZQoaAZHQJdcfRBu4w1oB03oA2gIR0Cq32n3lCC0dX2UKGgGR0CbSXD15B1LaAdN6ANoCEdAquC9aIN3GHV9lChoBkdAk1GFuzhP02gHTegDaAhHQKrjCIWP91l1fZQoaAZHQJve70se4kNoB03oA2gIR0Cq685VwPy1dX2UKGgGR0CQ/du3c580aAdN6ANoCEdAquvYBo24u3V9lChoBkdAkfFJiAlOXWgHTegDaAhHQKrtlnVXmvJ1fZQoaAZHQJzB6ZLIxQBoB03oA2gIR0Cq8L9wFTvRdX2UKGgGR0CWDTMFUyYYaAdN6ANoCEdAqvuFQuVX3nV9lChoBkdAnOBrjtG/e2gHTegDaAhHQKr7jnhbW3B1fZQoaAZHQIs6yIi1RchoB03oA2gIR0Cq/NfW1+iKdX2UKGgGR0CYBAx0+1SgaAdN6ANoCEdAqv8XbO/tY3V9lChoBkdAlIjtvn8sMGgHTegDaAhHQKsHw2sJY1Z1fZQoaAZHQJxJyQRwqAloB03oA2gIR0CrB8w1ivxIdX2UKGgGR0CaZ2iFTNt7aAdN6ANoCEdAqwkWFL39JnV9lChoBkdAm0lxPCVKPGgHTegDaAhHQKsLfWzWwvB1fZQoaAZHQJhp1RWLgoBoB03oA2gIR0CrF5dKmKqGdX2UKGgGR0CZRUuNPxhEaAdN6ANoCEdAqxeguRLbpXV9lChoBkdAnb6Vgx8D0WgHTegDaAhHQKsY8z1schl1fZQoaAZHQJsqU5eZ5RloB03oA2gIR0CrGypWmxdIdX2UKGgGR0Cco7DfFaStaAdN6ANoCEdAqyPqqhlDnnV9lChoBkdAnDvPJmuklGgHTegDaAhHQKsj8zD4xlB1fZQoaAZHQJ1FNmxt52RoB03oA2gIR0CrJTumrKeTdX2UKGgGR0CdKZNKRMewaAdN6ANoCEdAqyd0vXbudHV9lChoBkdAnC/wGOdXk2gHTegDaAhHQKszDvOyE+R1fZQoaAZHQJ0dNfE4vOBoB03oA2gIR0CrMx0sOG0vdX2UKGgGR0CccobVz6rOaAdN6ANoCEdAqzToNRWLgnV9lChoBkdAnk0h0uDjBGgHTegDaAhHQKs3B1klNUR1fZQoaAZHQI5pjdepn6FoB03oA2gIR0CrP6JCBwuNdX2UKGgGR0CaXPS2Yv38aAdN6ANoCEdAqz+uy1NQCXV9lChoBkdAmdVtyDIzWWgHTegDaAhHQKtA80CRwId1fZQoaAZHQJhTHfek56toB03oA2gIR0CrQyC3gDRudX2UKGgGR0Cb4xXWvr4WaAdN6ANoCEdAq01/sXzlLnV9lChoBkdAnNhVlwtJ4GgHTegDaAhHQKtNja37UG51fZQoaAZHQITdD0cwQDpoB03oA2gIR0CrT6fWDpTudX2UKGgGR0CcbmyrgflqaAdN6ANoCEdAq1MXKQq7RXV9lChoBkdAhWwqIJqqO2gHTegDaAhHQKtbtadMCcR1fZQoaAZHQJrEVgLJCBxoB03oA2gIR0CrW79srNGFdX2UKGgGR0CblPqpcX3yaAdN6ANoCEdAq10VRzijtXV9lChoBkdAmzXiUX531WgHTegDaAhHQKtfRhuwX691fZQoaAZHQJn1p7laKUFoB03oA2gIR0CraE85bQkYdX2UKGgGR0B7qHpzLfUGaAdN6ANoCEdAq2hcDdP+GXV9lChoBkdAmlGh19v0iGgHTegDaAhHQKtqMGyHEdh1fZQoaAZHQJxcTSPU8V5oB03oA2gIR0CrbXqTjebedX2UKGgGR0CVRb0/nnuBaAdNXgNoCEdAq3YNbcGke3V9lChoBkdAmeVQC0WuYGgHTegDaAhHQKt3s9Gqgh91fZQoaAZHQJRz02m51/5oB03oA2gIR0CreQ5mAbyZdX2UKGgGR0CBcujeKsMiaAdN6ANoCEdAq3tJ9E1EVnV9lChoBkdAl3Q3mzSkTGgHTegDaAhHQKuCR5prULF1fZQoaAZHQJi82D6Fds1oB03oA2gIR0Crg/SOzY29dX2UKGgGR0CACkS+QEIPaAdN6ANoCEdAq4VC1NQCS3V9lChoBkdAmSXJRfnfVWgHTegDaAhHQKuIM9qUNa11fZQoaAZHQJGEaioKlYVoB03oA2gIR0Crkiy5RTCMdX2UKGgGR0CaTK3/giu/aAdN6ANoCEdAq5PUYIjW1HV9lChoBkdAmlHiyY5T62gHTegDaAhHQKuVJNr0rbx1fZQoaAZHQJf9W5kK/mFoB03oA2gIR0Crl1QXyiEhdX2UKGgGR0CNYtLCemNzaAdN6ANoCEdAq55W2uxKQXV9lChoBkdAnmGoqCpWFWgHTegDaAhHQKuf+JgLJCB1fZQoaAZHQKA8c3sHB1toB03oA2gIR0CroWFEiMYNdX2UKGgGR0CeJqNWEK3NaAdN6ANoCEdAq6OR13dKunV9lChoBkdAnTN6z/p+t2gHTegDaAhHQKutW68QI2R1fZQoaAZHQJ/AOtQsPJ9oB03oA2gIR0CrsAHvc8DCdX2UKGgGR0Cey0aa1Cw9aAdN6ANoCEdAq7FVW0Z3tHV9lChoBkdAnf6VSOzY3GgHTegDaAhHQKuzpTqB3A51fZQoaAZHQJcz2Lehwl1oB03oA2gIR0CrutJJf6XTdX2UKGgGR0CDebJUYKplaAdN6ANoCEdAq7x6lk6LfnV9lChoBkdAkiz0ZiuuBGgHTegDaAhHQKu90WFev6l1fZQoaAZHQJq+kysS00FoB03oA2gIR0CrwAA00m+kdX2UKGgGR0CeqTjd56dEaAdN6ANoCEdAq8iYGW2PUHV9lChoBkdAl/CyPIXCTGgHTegDaAhHQKvLMbutwJh1fZQoaAZHQJtGsxwhnrZoB03oA2gIR0CrzUKfe1rqdX2UKGgGR0Cbi6hPCVKPaAdN6ANoCEdAq9BDNwBHTnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d9d291078f737f54c1628a130a3d370c990cf8adf2b123bbebbfb2a20259561
|
3 |
+
size 1020213
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1897.2825855680917, "std_reward": 250.9069605687214, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-16T18:26:02.062541"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78e215e366f47ffeb337dea37cb5a8cc2f107dec3c17a4b9b7dfc28eb0d38ba9
|
3 |
+
size 2176
|