Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,30 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
---
|
4 |
+
# Model description
|
5 |
+
|
6 |
+
This is EnCodecMAE, an audio feature extractor pretrained with masked language modelling to predict discrete targets generated by EnCodec, a neural audio codec.
|
7 |
+
For more details about the architecture and pretraining procedure, read the [paper](https://arxiv.org/abs/2309.07391).
|
8 |
+
|
9 |
+
# Usage
|
10 |
+
|
11 |
+
### 1) Clone the [EnCodecMAE library](https://github.com/habla-liaa/encodecmae):
|
12 |
+
```
|
13 |
+
git clone https://github.com/habla-liaa/encodecmae.git
|
14 |
+
```
|
15 |
+
|
16 |
+
### 2) Install it:
|
17 |
+
|
18 |
+
```
|
19 |
+
cd encodecmae
|
20 |
+
pip install -e .
|
21 |
+
```
|
22 |
+
|
23 |
+
### 3) Extract embeddings in Python:
|
24 |
+
|
25 |
+
``` python
|
26 |
+
from encodecmae import load_model
|
27 |
+
|
28 |
+
model = load_model('base', device='cuda:0')
|
29 |
+
features = model.extract_features_from_file('gsc/bed/00176480_nohash_0.wav')
|
30 |
+
```
|