|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from .utils import capture_init |
|
|
|
EPS = 1e-8 |
|
|
|
|
|
def overlap_and_add(signal, frame_step): |
|
outer_dimensions = signal.size()[:-2] |
|
frames, frame_length = signal.size()[-2:] |
|
|
|
subframe_length = math.gcd(frame_length, frame_step) |
|
subframe_step = frame_step // subframe_length |
|
subframes_per_frame = frame_length // subframe_length |
|
output_size = frame_step * (frames - 1) + frame_length |
|
output_subframes = output_size // subframe_length |
|
|
|
subframe_signal = signal.view(*outer_dimensions, -1, subframe_length) |
|
|
|
frame = torch.arange(0, output_subframes, |
|
device=signal.device).unfold(0, subframes_per_frame, subframe_step) |
|
frame = frame.long() |
|
frame = frame.contiguous().view(-1) |
|
|
|
result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length) |
|
result.index_add_(-2, frame, subframe_signal) |
|
result = result.view(*outer_dimensions, -1) |
|
return result |
|
|
|
|
|
class ConvTasNet(nn.Module): |
|
@capture_init |
|
def __init__(self, |
|
N=256, |
|
L=20, |
|
B=256, |
|
H=512, |
|
P=3, |
|
X=8, |
|
R=4, |
|
C=4, |
|
audio_channels=1, |
|
samplerate=44100, |
|
norm_type="gLN", |
|
causal=False, |
|
mask_nonlinear='relu'): |
|
""" |
|
Args: |
|
N: Number of filters in autoencoder |
|
L: Length of the filters (in samples) |
|
B: Number of channels in bottleneck 1 × 1-conv block |
|
H: Number of channels in convolutional blocks |
|
P: Kernel size in convolutional blocks |
|
X: Number of convolutional blocks in each repeat |
|
R: Number of repeats |
|
C: Number of speakers |
|
norm_type: BN, gLN, cLN |
|
causal: causal or non-causal |
|
mask_nonlinear: use which non-linear function to generate mask |
|
""" |
|
super(ConvTasNet, self).__init__() |
|
|
|
self.N, self.L, self.B, self.H, self.P, self.X, self.R, self.C = N, L, B, H, P, X, R, C |
|
self.norm_type = norm_type |
|
self.causal = causal |
|
self.mask_nonlinear = mask_nonlinear |
|
self.audio_channels = audio_channels |
|
self.samplerate = samplerate |
|
|
|
self.encoder = Encoder(L, N, audio_channels) |
|
self.separator = TemporalConvNet(N, B, H, P, X, R, C, norm_type, causal, mask_nonlinear) |
|
self.decoder = Decoder(N, L, audio_channels) |
|
|
|
for p in self.parameters(): |
|
if p.dim() > 1: |
|
nn.init.xavier_normal_(p) |
|
|
|
def valid_length(self, length): |
|
return length |
|
|
|
def forward(self, mixture): |
|
""" |
|
Args: |
|
mixture: [M, T], M is batch size, T is #samples |
|
Returns: |
|
est_source: [M, C, T] |
|
""" |
|
mixture_w = self.encoder(mixture) |
|
est_mask = self.separator(mixture_w) |
|
est_source = self.decoder(mixture_w, est_mask) |
|
|
|
|
|
T_origin = mixture.size(-1) |
|
T_conv = est_source.size(-1) |
|
est_source = F.pad(est_source, (0, T_origin - T_conv)) |
|
return est_source |
|
|
|
|
|
class Encoder(nn.Module): |
|
"""Estimation of the nonnegative mixture weight by a 1-D conv layer. |
|
""" |
|
def __init__(self, L, N, audio_channels): |
|
super(Encoder, self).__init__() |
|
|
|
self.L, self.N = L, N |
|
|
|
|
|
self.conv1d_U = nn.Conv1d(audio_channels, N, kernel_size=L, stride=L // 2, bias=False) |
|
|
|
def forward(self, mixture): |
|
""" |
|
Args: |
|
mixture: [M, T], M is batch size, T is #samples |
|
Returns: |
|
mixture_w: [M, N, K], where K = (T-L)/(L/2)+1 = 2T/L-1 |
|
""" |
|
mixture_w = F.relu(self.conv1d_U(mixture)) |
|
return mixture_w |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, N, L, audio_channels): |
|
super(Decoder, self).__init__() |
|
|
|
self.N, self.L = N, L |
|
self.audio_channels = audio_channels |
|
|
|
self.basis_signals = nn.Linear(N, audio_channels * L, bias=False) |
|
|
|
def forward(self, mixture_w, est_mask): |
|
""" |
|
Args: |
|
mixture_w: [M, N, K] |
|
est_mask: [M, C, N, K] |
|
Returns: |
|
est_source: [M, C, T] |
|
""" |
|
|
|
source_w = torch.unsqueeze(mixture_w, 1) * est_mask |
|
source_w = torch.transpose(source_w, 2, 3) |
|
|
|
est_source = self.basis_signals(source_w) |
|
m, c, k, _ = est_source.size() |
|
est_source = est_source.view(m, c, k, self.audio_channels, -1).transpose(2, 3).contiguous() |
|
est_source = overlap_and_add(est_source, self.L // 2) |
|
return est_source |
|
|
|
|
|
class TemporalConvNet(nn.Module): |
|
def __init__(self, N, B, H, P, X, R, C, norm_type="gLN", causal=False, mask_nonlinear='relu'): |
|
""" |
|
Args: |
|
N: Number of filters in autoencoder |
|
B: Number of channels in bottleneck 1 × 1-conv block |
|
H: Number of channels in convolutional blocks |
|
P: Kernel size in convolutional blocks |
|
X: Number of convolutional blocks in each repeat |
|
R: Number of repeats |
|
C: Number of speakers |
|
norm_type: BN, gLN, cLN |
|
causal: causal or non-causal |
|
mask_nonlinear: use which non-linear function to generate mask |
|
""" |
|
super(TemporalConvNet, self).__init__() |
|
|
|
self.C = C |
|
self.mask_nonlinear = mask_nonlinear |
|
|
|
|
|
layer_norm = ChannelwiseLayerNorm(N) |
|
|
|
bottleneck_conv1x1 = nn.Conv1d(N, B, 1, bias=False) |
|
|
|
repeats = [] |
|
for r in range(R): |
|
blocks = [] |
|
for x in range(X): |
|
dilation = 2**x |
|
padding = (P - 1) * dilation if causal else (P - 1) * dilation // 2 |
|
blocks += [ |
|
TemporalBlock(B, |
|
H, |
|
P, |
|
stride=1, |
|
padding=padding, |
|
dilation=dilation, |
|
norm_type=norm_type, |
|
causal=causal) |
|
] |
|
repeats += [nn.Sequential(*blocks)] |
|
temporal_conv_net = nn.Sequential(*repeats) |
|
|
|
mask_conv1x1 = nn.Conv1d(B, C * N, 1, bias=False) |
|
|
|
self.network = nn.Sequential(layer_norm, bottleneck_conv1x1, temporal_conv_net, |
|
mask_conv1x1) |
|
|
|
def forward(self, mixture_w): |
|
""" |
|
Keep this API same with TasNet |
|
Args: |
|
mixture_w: [M, N, K], M is batch size |
|
returns: |
|
est_mask: [M, C, N, K] |
|
""" |
|
M, N, K = mixture_w.size() |
|
score = self.network(mixture_w) |
|
score = score.view(M, self.C, N, K) |
|
if self.mask_nonlinear == 'softmax': |
|
est_mask = F.softmax(score, dim=1) |
|
elif self.mask_nonlinear == 'relu': |
|
est_mask = F.relu(score) |
|
else: |
|
raise ValueError("Unsupported mask non-linear function") |
|
return est_mask |
|
|
|
|
|
class TemporalBlock(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
norm_type="gLN", |
|
causal=False): |
|
super(TemporalBlock, self).__init__() |
|
|
|
conv1x1 = nn.Conv1d(in_channels, out_channels, 1, bias=False) |
|
prelu = nn.PReLU() |
|
norm = chose_norm(norm_type, out_channels) |
|
|
|
dsconv = DepthwiseSeparableConv(out_channels, in_channels, kernel_size, stride, padding, |
|
dilation, norm_type, causal) |
|
|
|
self.net = nn.Sequential(conv1x1, prelu, norm, dsconv) |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x: [M, B, K] |
|
Returns: |
|
[M, B, K] |
|
""" |
|
residual = x |
|
out = self.net(x) |
|
|
|
return out + residual |
|
|
|
|
|
|
|
class DepthwiseSeparableConv(nn.Module): |
|
def __init__(self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
norm_type="gLN", |
|
causal=False): |
|
super(DepthwiseSeparableConv, self).__init__() |
|
|
|
|
|
depthwise_conv = nn.Conv1d(in_channels, |
|
in_channels, |
|
kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=in_channels, |
|
bias=False) |
|
if causal: |
|
chomp = Chomp1d(padding) |
|
prelu = nn.PReLU() |
|
norm = chose_norm(norm_type, in_channels) |
|
|
|
pointwise_conv = nn.Conv1d(in_channels, out_channels, 1, bias=False) |
|
|
|
if causal: |
|
self.net = nn.Sequential(depthwise_conv, chomp, prelu, norm, pointwise_conv) |
|
else: |
|
self.net = nn.Sequential(depthwise_conv, prelu, norm, pointwise_conv) |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x: [M, H, K] |
|
Returns: |
|
result: [M, B, K] |
|
""" |
|
return self.net(x) |
|
|
|
|
|
class Chomp1d(nn.Module): |
|
"""To ensure the output length is the same as the input. |
|
""" |
|
def __init__(self, chomp_size): |
|
super(Chomp1d, self).__init__() |
|
self.chomp_size = chomp_size |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x: [M, H, Kpad] |
|
Returns: |
|
[M, H, K] |
|
""" |
|
return x[:, :, :-self.chomp_size].contiguous() |
|
|
|
|
|
def chose_norm(norm_type, channel_size): |
|
"""The input of normlization will be (M, C, K), where M is batch size, |
|
C is channel size and K is sequence length. |
|
""" |
|
if norm_type == "gLN": |
|
return GlobalLayerNorm(channel_size) |
|
elif norm_type == "cLN": |
|
return ChannelwiseLayerNorm(channel_size) |
|
elif norm_type == "id": |
|
return nn.Identity() |
|
else: |
|
|
|
|
|
return nn.BatchNorm1d(channel_size) |
|
|
|
|
|
|
|
class ChannelwiseLayerNorm(nn.Module): |
|
"""Channel-wise Layer Normalization (cLN)""" |
|
def __init__(self, channel_size): |
|
super(ChannelwiseLayerNorm, self).__init__() |
|
self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) |
|
self.beta = nn.Parameter(torch.Tensor(1, channel_size, 1)) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
self.gamma.data.fill_(1) |
|
self.beta.data.zero_() |
|
|
|
def forward(self, y): |
|
""" |
|
Args: |
|
y: [M, N, K], M is batch size, N is channel size, K is length |
|
Returns: |
|
cLN_y: [M, N, K] |
|
""" |
|
mean = torch.mean(y, dim=1, keepdim=True) |
|
var = torch.var(y, dim=1, keepdim=True, unbiased=False) |
|
cLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta |
|
return cLN_y |
|
|
|
|
|
class GlobalLayerNorm(nn.Module): |
|
"""Global Layer Normalization (gLN)""" |
|
def __init__(self, channel_size): |
|
super(GlobalLayerNorm, self).__init__() |
|
self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) |
|
self.beta = nn.Parameter(torch.Tensor(1, channel_size, 1)) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
self.gamma.data.fill_(1) |
|
self.beta.data.zero_() |
|
|
|
def forward(self, y): |
|
""" |
|
Args: |
|
y: [M, N, K], M is batch size, N is channel size, K is length |
|
Returns: |
|
gLN_y: [M, N, K] |
|
""" |
|
|
|
mean = y.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True) |
|
var = (torch.pow(y - mean, 2)).mean(dim=1, keepdim=True).mean(dim=2, keepdim=True) |
|
gLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta |
|
return gLN_y |
|
|
|
|
|
if __name__ == "__main__": |
|
torch.manual_seed(123) |
|
M, N, L, T = 2, 3, 4, 12 |
|
K = 2 * T // L - 1 |
|
B, H, P, X, R, C, norm_type, causal = 2, 3, 3, 3, 2, 2, "gLN", False |
|
mixture = torch.randint(3, (M, T)) |
|
|
|
encoder = Encoder(L, N) |
|
encoder.conv1d_U.weight.data = torch.randint(2, encoder.conv1d_U.weight.size()) |
|
mixture_w = encoder(mixture) |
|
print('mixture', mixture) |
|
print('U', encoder.conv1d_U.weight) |
|
print('mixture_w', mixture_w) |
|
print('mixture_w size', mixture_w.size()) |
|
|
|
|
|
separator = TemporalConvNet(N, B, H, P, X, R, C, norm_type=norm_type, causal=causal) |
|
est_mask = separator(mixture_w) |
|
print('est_mask', est_mask) |
|
|
|
|
|
decoder = Decoder(N, L) |
|
est_mask = torch.randint(2, (B, K, C, N)) |
|
est_source = decoder(mixture_w, est_mask) |
|
print('est_source', est_source) |
|
|
|
|
|
conv_tasnet = ConvTasNet(N, L, B, H, P, X, R, C, norm_type=norm_type) |
|
est_source = conv_tasnet(mixture) |
|
print('est_source', est_source) |
|
print('est_source size', est_source.size()) |
|
|