ppo-LunarLander-v2 / config.json
lorenzreyes's picture
Upload PPO LunarLander-v2 trained agent
e56d85a
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a072aa1f1c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a072aa1f250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a072aa1f2e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a072aa1f370>", "_build": "<function ActorCriticPolicy._build at 0x7a072aa1f400>", "forward": "<function ActorCriticPolicy.forward at 0x7a072aa1f490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a072aa1f520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a072aa1f5b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a072aa1f640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a072aa1f6d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a072aa1f760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a072aa1f7f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a072abb7000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702260018099033662, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAA0DhSwLO5c91FNNvFVjBC0ra60P+bswAAgD8AAIA/GqEBvcOZSrpbTnU3KbnvMotBELV6BY62AACAPwAAgD/N+h48TMC2PySiRD5skcU9gC7wuqmRIzsAAAAAAAAAAIAZW70paCS6cIF5txwzXLIO0mS674SUNgAAgD8AAIA/DYr/PfFnNz9Ykls78FV6vhRV+jzoOXE9AAAAAAAAAABmxRW99uB2unndyTPLn40uAK36OmsJq7MAAIA/AACAP940h75VYBI/2aOWPQpBg769Kc+8etQJPgAAAAAAAAAAwB24vVy/VbqG2es6ydNNM0FDmztLIPsyAAAAAAAAgD86mBw+7umjP80q0z6HmeK+qjZWPnLsxj0AAAAAAAAAAC1lbj4/Pm4/oPf0Pkq0yb7Hs4A+8jAcPgAAAAAAAAAAZjAuvrtPmLwb01a83G36uptVBT4ZBcY7AACAPwAAAAAzWS484WCQuvUWLLwJzx00BQU6OfM2frMAAIA/AACAP22CcT6dhB0/AveXvd+tlr7d2Ho9HtrTvAAAAAAAAAAAeDiTvvsXZD+uNAY+06C/vkj1x70MjYs9AAAAAAAAAABmV7c8j7c3vBeKkLyDuY48OwqbvXPuaj0AAIA/AACAP7OAaz2PWge6UkQ0uVxnG7TsjxK74OJXOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIaJ7b+Lm+MAWyUTegDjAF0lEdAkldC+tbLU3V9lChoBkdAYTLbTtsvZmgHTegDaAhHQJJYHuF6Avt1fZQoaAZHQGHYy+Yc/+toB03oA2gIR0CSWQHBUJfIdX2UKGgGR0Bwtv2pQ1rJaAdNugNoCEdAkmb1Fx4pt3V9lChoBkdAYPAcG1QZXWgHTegDaAhHQJJna1QZXMh1fZQoaAZHQGQgJyZKFqVoB03oA2gIR0CSaezVtoBadX2UKGgGR0BiitJ6IFeOaAdN6ANoCEdAkm50S/TLGXV9lChoBkdAYVwE/SpiqmgHTegDaAhHQJJutNQCSzR1fZQoaAZHQGRNbL2YfGNoB03oA2gIR0CSb9jFhodudX2UKGgGR0BvVvhVENONaAdNlAFoCEdAknE3iR4hU3V9lChoBkdAZDDzV+Zw42gHTegDaAhHQJJ07Vpblil1fZQoaAZHQGaT5SvTw2FoB03oA2gIR0CSdTSIP9UCdX2UKGgGR0Bc8dm+TNdJaAdN6ANoCEdAkn7cUIsyz3V9lChoBkdAYwlgF5fMOmgHTegDaAhHQJKAU1WKdhB1fZQoaAZHQGKuIrWiDdxoB03oA2gIR0CSgHeYD1XedX2UKGgGR0BjrpIUahpQaAdN6ANoCEdAkoRi3gDRt3V9lChoBkdAZadE61b7j2gHTegDaAhHQJKfeQDFId51fZQoaAZHQGAUcNQTEitoB03oA2gIR0CSqBCKrJbMdX2UKGgGR0BhJQ2wV0tAaAdN6ANoCEdAkqmQdXDFZXV9lChoBkdAciYSx7iQ1mgHTVYDaAhHQJKt25qdpZh1fZQoaAZHQGXfLhaTwDxoB03oA2gIR0CSttHe7+UAdX2UKGgGR0Bu0uWQfZElaAdNTQNoCEdAkrjE0m+j/XV9lChoBkdAQRiZ8a4tpWgHTQ8BaAhHQJK5eT5ftyB1fZQoaAZHQGPv1FYuCf9oB03oA2gIR0CSuiu5jH4odX2UKGgGR0BmNi3Td+G5aAdN6ANoCEdAksApmVZ9u3V9lChoBkdAZGlpr1uivmgHTegDaAhHQJLAgfyPMjh1fZQoaAZHQGPzLU1AJLNoB03oA2gIR0CSwhcv/R3NdX2UKGgGR0BnxB73PAwgaAdN6ANoCEdAksk6Ii1RcnV9lChoBkdAYcFiuMdcS2gHTegDaAhHQJLJroPkJa91fZQoaAZHwCLKLAHmig1oB00FAWgIR0CSy8wrUb1idX2UKGgGR0BgIl4Z/CqIaAdN6ANoCEdAktPn/1g6VHV9lChoBkdAXrUqrilzl2gHTegDaAhHQJLVY7p3X7N1fZQoaAZHQF1MRhc7hehoB03oA2gIR0CS1YhZQpF1dX2UKGgGR0BlSMdq+JxeaAdN6ANoCEdAktlLqt5lfHV9lChoBkdAY5D2cJ+lTGgHTegDaAhHQJLfPYe1a4d1fZQoaAZHQDKug13t8eFoB0vxaAhHQJL2oX668QJ1fZQoaAZHQGGvjynUDuBoB03oA2gIR0CS/Z7p3X7MdX2UKGgGR0BjysYKpkwwaAdN6ANoCEdAkwKAezUqhHV9lChoBkdAbhbA9FF2FGgHTUoDaAhHQJMEk3qAz551fZQoaAZHQG0JeZG8VYZoB015AWgIR0CTBYJ0W/JvdX2UKGgGR0Bokxcu8K5TaAdN6ANoCEdAkwnIESuhbnV9lChoBkdAYsacKgIyCWgHTegDaAhHQJMLWUKRdQh1fZQoaAZHQGD+dupCKJloB03oA2gIR0CTEIuzhP0qdX2UKGgGR0BhwuJrLyMDaAdN6ANoCEdAkxDKLbYbsHV9lChoBkdAYm14zJp35mgHTegDaAhHQJMRxk8Rtgt1fZQoaAZHQEx1aFEiMYNoB0vZaAhHQJMUYiliz9l1fZQoaAZHQGU82tEG7jFoB03oA2gIR0CTFmRQ79ycdX2UKGgGR0BhuDF85S3taAdN6ANoCEdAkxa7y6MBIXV9lChoBkdAZriISDh99mgHTegDaAhHQJMYuUSqU/x1fZQoaAZHQGXBaMJhOQBoB03oA2gIR0CTH6dDpkf+dX2UKGgGR0BgC0AT7EYPaAdN6ANoCEdAkyEP8qFyrHV9lChoBkdAcuj1a4c3l2gHTScDaAhHQJMogyLyc1B1fZQoaAZHQHHMp0fYBeZoB03YA2gIR0CTKbK8+RozdX2UKGgGR0BigvymQ8wIaAdN6ANoCEdAk0PtPDYRNHV9lChoBkdAZZdfoA4n4WgHTegDaAhHQJNNi8VYZEV1fZQoaAZHQHC1zhUBGQVoB01bAmgIR0CTTaN5MURGdX2UKGgGR0Bgpd6zE74jaAdN6ANoCEdAk0/I7q6e5HV9lChoBkdAY2PbnoxHoWgHTegDaAhHQJNQ7BXS0Bx1fZQoaAZHQHFFIoAn2IxoB020A2gIR0CTVLoLG7z1dX2UKGgGR0Bu2Inc+JP7aAdNhgNoCEdAk1mzMzMzM3V9lChoBkdAZqjbiZOSGWgHTegDaAhHQJNeDb/Ot4l1fZQoaAZHQGapdUCJXQtoB03oA2gIR0CTXkyOaOPvdX2UKGgGR0BjvW801qFiaAdN6ANoCEdAk2PjQ/oq1HV9lChoBkdAZERgDRtxdmgHTegDaAhHQJNnpj8UEgZ1fZQoaAZHQGGG/nfVI7NoB03oA2gIR0CTamkeZG8VdX2UKGgGR0BsRp3NcGC7aAdNlgNoCEdAk3BE1l5GBnV9lChoBkdAYhN8UmD15GgHTegDaAhHQJNzUcjqv/11fZQoaAZHQHCsowyqMm5oB01wA2gIR0CTdnhXKbKBdX2UKGgGR0BwO86PsAvMaAdNMwJoCEdAk3jBzzVc2XV9lChoBkdAZ77kK/mDDmgHTegDaAhHQJN768TSLIh1fZQoaAZHQHKOVtXPqs5oB00tAmgIR0CTfOwx33YddX2UKGgGR0Bybuys0YTCaAdN8QJoCEdAk3+Z4B3iaXV9lChoBkdAY51zMibDuWgHTegDaAhHQJOTh7ngYP51fZQoaAZHQHAlg3PzFuNoB03TAWgIR0CTlodeIEbHdX2UKGgGR0Bw4VHhCMP0aAdNngFoCEdAk5zsi4axYHV9lChoBkdAYAjYhdMTOGgHTegDaAhHQJOdGufVZs91fZQoaAZHQGStOxbB42VoB03oA2gIR0CTnTJ9RaX8dX2UKGgGR0Bmu6rBCUosaAdN6ANoCEdAk59In0Cih3V9lChoBkdAcknX4CZF5WgHTS4BaAhHQJOgySwGGEh1fZQoaAZHQHGOwJ1JUYNoB01/AWgIR0CTpIdXko4NdX2UKGgGR0Buo1nyup0faAdNdAJoCEdAk6waneizs3V9lChoBkdAYon6t1ZDA2gHTegDaAhHQJOsY4ffXPJ1fZQoaAZHQGDA2ZZ0SytoB03oA2gIR0CTrKBeHBUJdX2UKGgGR0BwRX+S8rZraAdNdANoCEdAk60mh24d63V9lChoBkdAco01mJ3xF2gHTewBaAhHQJOtjDEWIoF1fZQoaAZHQG+Pd0aIeo1oB01wAmgIR0CTrdgdwNsndX2UKGgGR0BwYv+YMOPOaAdNlwFoCEdAk65RAnlXBHV9lChoBkdAYtOvXbuc+mgHTegDaAhHQJOv2LxZuAJ1fZQoaAZHQHGIDVx0dR1oB01sAWgIR0CTsDMkhRqHdX2UKGgGR0BtbBbUwztUaAdNlgFoCEdAk7HloHs1K3V9lChoBkdAcJO4ku6ErWgHTYABaAhHQJOzSp0fYBh1fZQoaAZHQGZlHfVI7NloB03oA2gIR0CTtr1RLsa9dX2UKGgGR0Bru38sMAmzaAdNRAFoCEdAk7p/bGm1pnV9lChoBkdAcbPpeu3c6GgHTboCaAhHQJPDIE5hjON1fZQoaAZHQG5MRiXpnpVoB027AWgIR0CTxBQtSQ5ndX2UKGgGR0Bwu/09QoCuaAdNOQFoCEdAk8S8gEEDAHV9lChoBkdAcB0GoaUA1mgHTYoBaAhHQJPEzWqcVgx1fZQoaAZHQHFeLzf779BoB00cAmgIR0CTyD8CPp6hdX2UKGgGR0Bwly20AtFsaAdNKAFoCEdAk8iH1rZam3V9lChoBkdAXAH1e0G/vmgHTegDaAhHQJPKJLBbfP51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}