lorenzreyes commited on
Commit
ddb0823
1 Parent(s): c620cde

Upload PPO LunarLander-v2 unit1 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 259.46 +/- 20.67
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e057b4097e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e057b409870>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e057b409900>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e057b409990>", "_build": "<function ActorCriticPolicy._build at 0x7e057b409a20>", "forward": "<function ActorCriticPolicy.forward at 0x7e057b409ab0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e057b409b40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e057b409bd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e057b409c60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e057b409cf0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e057b409d80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e057b409e10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e057b59a340>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703656193818701114, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0sO77dD6g/kqauvn4asb6r+S6+3JSFvQAAAAAAAAAAM42RvUWFMj8mSH69FtGovhmBoLwywLk9AAAAAAAAAABmLam8jgyXvDGWnz1a5Pq8QOPWvVVIT74AAIA/AACAPz0/Yb7AaM8+UDVdPmOaTb7Jwqy8vgRWvQAAAAAAAAAAUs2GviEpGD/OnXU+Y8eNvkdr2bzyGvs9AAAAAAAAAACmsRY+1xpXPjKPCb794I6+WJUIPXoDKzwAAAAAAAAAAOiqz76WjpQ/YzlDvrGftL6sNYm+94oEPgAAAAAAAAAA2tulPStDqz0yrjq99pRuvjcUgDwbKVa9AAAAAAAAAAAbgaq+u118P+gI8r0ba46+yZF0vv+myz0AAAAAAAAAAGaA0LwUpIq6fa5Vte/TPq8fZPw5SFF2NAAAgD8AAIA/M/qSPBRYjrrwDAa0jo4Fr8k1w7nHdqIzAACAPwAAgD8Adqw8RMmlPQdFL7yrbT++aiuYuy6l8zwAAAAAAAAAAAAPBj6RfiA/UBIlvefFXL7Jh1g9JrUiPQAAAAAAAAAA4NEmvnVaiD+DG/G+t8fVvsgpA752BUW+AAAAAAAAAACAqmi9zP3dPgYKfj1mZIK+UFBbvER3Mj0AAAAAAAAAAMBZ/r3FLQM/3mpTPtc3iL6e14K8LwJMPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHB4w6ZH/caMAWyUTQcBjAF0lEdAkYm34j8k2XV9lChoBkdAcecdLg4wRGgHTWQBaAhHQJGRGXF98Z11fZQoaAZHQHDm2gSOBDpoB00jAWgIR0CRi/7XQMQVdX2UKGgGR0BL0z6zmfXgaAdNDgFoCEdAkZFP4h2W6nV9lChoBkdAcAzSXt0FKWgHTcwBaAhHQJGMp1GLDQ91fZQoaAZHQHGtEfxMFlloB01JAWgIR0CRk1ydWhh6dX2UKGgGR0BxEjJcPe54aAdNBAFoCEdAkY92YKIBR3V9lChoBkdAcLNNWU8mr2gHTSQBaAhHQJGVKGvfTCt1fZQoaAZHQHGFVMqSX+loB01lAWgIR0CRlTq+8Gs4dX2UKGgGR0BwsLhKlHjIaAdNNQFoCEdAkZVbxEv0y3V9lChoBkdAcJ/O/tY0VWgHTRkBaAhHQJGVVIFvAGl1fZQoaAZHQHGj3nuAqd9oB00dAWgIR0CRkLphWo3rdX2UKGgGR0Bw1dd4VymzaAdNUwFoCEdAkZHkNKAavXV9lChoBkdAc0kj4pMHr2gHTUYBaAhHQJGXq3kPtlZ1fZQoaAZHQHDFOpbUwztoB00tAWgIR0CRkyFocrAhdX2UKGgGR0BxOpokAxSHaAdNZAFoCEdAkZNIgV45cXV9lChoBkdAcQtLXtjTa2gHTWsBaAhHQJGZFFH8TBZ1fZQoaAZHQG8ELnDBMzxoB00rAWgIR0CRlS3WWhRJdX2UKGgGR0BwVfWAf+0gaAdNIgFoCEdAkZWg/X5FgHV9lChoBkdAbvX19ORDC2gHTUABaAhHQJGa/3sXzlN1fZQoaAZHQG+qdnscABFoB002AWgIR0CRmuKL876pdX2UKGgGR0Bw8g42jwhGaAdNFAFoCEdAkZvSOvMbFXV9lChoBkdAbujxz7uUlmgHTSEBaAhHQJGYLqQiiZh1fZQoaAZHQHAysWCVbA1oB00lAWgIR0CRnjezD4xldX2UKGgGR0BwMMxk/bCaaAdNEQFoCEdAkZkEFfReC3V9lChoBkdAbv3O9FnZkGgHTToBaAhHQJGesfLcKw91fZQoaAZHQHEUvXkHUttoB007AWgIR0CRnskrPMSsdX2UKGgGR0BwiLOiWVu8aAdNRQFoCEdAkZ8t3B55aHV9lChoBkdAbveFxn3+M2gHTS4BaAhHQJGbBGe+VTt1fZQoaAZHQHB4tcKPXCloB00tAWgIR0CRnHZIg/1QdX2UKGgGR0Bw0CwB5ooNaAdNMwFoCEdAkZx/zOHFgnV9lChoBkdAa0+fAbhm5GgHTVsBaAhHQJGiPeGfwql1fZQoaAZHQG+RQ1BMSK5oB00HAWgIR0CRnavg3tKJdX2UKGgGR0BwjRs+FDfFaAdNFgFoCEdAkaNvSx7iQ3V9lChoBkdAcp7wEyLyc2gHTSUBaAhHQJGePs1KoQ51fZQoaAZHQGv79+PRzBBoB00dAWgIR0CRo8Jr+HafdX2UKGgGR0BywR9oexOdaAdNaAFoCEdAkaQM2vStvHV9lChoBkdAcXMoKlYU4GgHTQ8BaAhHQJGhCKGcnVp1fZQoaAZHQHAvRy8zyjJoB00wAWgIR0CRoVGFi8WcdX2UKGgGR0ByYfqX4TK1aAdNGQFoCEdAkaek1hsqKHV9lChoBkdAckXMd92HL2gHTTcBaAhHQJGoNYT0xud1fZQoaAZHQHHAM5jpcHJoB01QAWgIR0CRqHBDXvphdX2UKGgGR0Bx/YIMSbpeaAdNUgFoCEdAkaj8/IKc/nV9lChoBkdAbhvUyYXwb2gHTR0BaAhHQJGjxu4wyqN1fZQoaAZHQHGgeh0yP+5oB03fAWgIR0CRqsmEXcgydX2UKGgGR0ByPHf4yoGZaAdNLAFoCEdAkaYapDNQj3V9lChoBkdAcdPM495hSmgHTSgBaAhHQJGr2X4TK1Z1fZQoaAZHQHIqzpkf9xZoB006AWgIR0CRuTJKraM8dX2UKGgGR0Bvh9urIYFaaAdNLgFoCEdAkboTVUdaMnV9lChoBkdAb0bopx3mm2gHTSEBaAhHQJG/ZOO801t1fZQoaAZHQHI5fWDpTuRoB00bAWgIR0CRv9/echC/dX2UKGgGR0BwHwI4VARkaAdNPgFoCEdAkbsAYpDu0HV9lChoBkdAbpXeF+NLlGgHTR0BaAhHQJG87t/nW8R1fZQoaAZHQHAwX5aePJdoB018AWgIR0CRwkPIGQjmdX2UKGgGR0BxWczEaVD8aAdNJwFoCEdAkb15ML4N7XV9lChoBkdAcFi8VHnU2GgHTRoBaAhHQJHDTMB6rvN1fZQoaAZHQHCsVhCtzS1oB00QAWgIR0CRw4BeXzDodX2UKGgGR0BwwFUxVQyiaAdNQQFoCEdAkcVcrVe8f3V9lChoBkdAcAcExIre7GgHTU0BaAhHQJHBNS0jTrp1fZQoaAZHQGwIl90A93doB00eAWgIR0CRxpAR02cbdX2UKGgGR0BuqJ5LRKHxaAdNYgFoCEdAkcclS88La3V9lChoBkdAbgR212JSBWgHTSMBaAhHQJHB4Orhisp1fZQoaAZHQHCfzTKDCgtoB00QAWgIR0CRwo1stTUBdX2UKGgGR0Bxy9WDHwPRaAdNMAFoCEdAkcfky+HrQnV9lChoBkdAcn3HyVfNRmgHTUYBaAhHQJHDSZ8a4tp1fZQoaAZHQHJt8zImw7loB00wAWgIR0CRyMizcAR1dX2UKGgGR0Bw6wZVGTcJaAdNKwFoCEdAkcklTvRZ2nV9lChoBkdAboK87IT4+WgHTUsBaAhHQJHFpkd3jdZ1fZQoaAZHQG1PgE2YOUdoB00cAWgIR0CRx2M5wOvudX2UKGgGR0BxiQmF8G9paAdNMAFoCEdAkcdvqs2ehHV9lChoBkdAcZnbsWweNmgHTU8BaAhHQJHOCy2QXAN1fZQoaAZHQG5l3xnWattoB004AWgIR0CRzo6guh9LdX2UKGgGR0BwXJJI1+AmaAdNOgFoCEdAkc7ajesPrnV9lChoBkdAbkBdt2s7uGgHTRgBaAhHQJHPxHTZxrB1fZQoaAZHQHH00aMrEtNoB00ZAWgIR0CRy+Rhc7hfdX2UKGgGR0ByRpQGfPHDaAdNJAFoCEdAkc1LeuV5bHV9lChoBkdAcmzl7+kxh2gHTVkBaAhHQJHUN1nuiN91fZQoaAZHQG9eoCU5dW1oB01AAWgIR0CRz6IomXw9dX2UKGgGR0BywM23rleXaAdNGgFoCEdAkdTKU3XI2nV9lChoBkdAb8UYaYNRWWgHTSsBaAhHQJHP8Hnlnyx1fZQoaAZHQG8ZBInSfDloB01HAWgIR0CR1V51vES/dX2UKGgGR0BsSFAqur6taAdNggFoCEdAkdbLuhK15XV9lChoBkdAcKpsPrfLtGgHTUUBaAhHQJHXC/RE4Nt1fZQoaAZHQHEt256MR6FoB00pAWgIR0CR0pF1SwW4dX2UKGgGR0BwUmT5ftx/aAdNJAFoCEdAkdQAeii7CnV9lChoBkdAcffnW8RL9WgHTSwBaAhHQJHUXKifxtp1fZQoaAZHQHEjd+LFXJZoB01JAWgIR0CR28Sy+pOvdX2UKGgGR0BtUi2QXAM2aAdNSQFoCEdAkdwq4Ds+mnV9lChoBkdAbGehL5AQhGgHTRIBaAhHQJHXInjQzDZ1fZQoaAZHQHB/jtLL6k9oB01TAWgIR0CR3dewLVnVdX2UKGgGR0BrYnq3VkMDaAdNdAFoCEdAkd5i7oSteXV9lChoBkdAcenCSA6Mi2gHTQwBaAhHQJHay/Zdv891fZQoaAZHQHGuT+ee4CpoB01GAWgIR0CR2vkvsZ5zdX2UKGgGR0Bw1sTIvJzUaAdNOAFoCEdAkeFQ0GeMAHV9lChoBkdAckQc32mHg2gHTS8BaAhHQJHcR/lQuVZ1fZQoaAZHQG81m2TgVGloB003AWgIR0CR4k/ub7TEdX2UKGgGR0BwGb0RODaoaAdNSQFoCEdAkeKQWSEDhnV9lChoBkdAch5XRw6ySmgHTSQBaAhHQJHi+kBS1md1fZQoaAZHQG8X1PepGWloB004AWgIR0CR5BqYqoZRdX2UKGgGR0BycH961LJ0aAdNMgFoCEdAkd9UBjnV5XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a055e273c51482dbfc52de45a53cccb71c311b18132510ca7f9103fb35b44df
3
+ size 148072
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7e057b4097e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e057b409870>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e057b409900>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e057b409990>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7e057b409a20>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7e057b409ab0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e057b409b40>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e057b409bd0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7e057b409c60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e057b409cf0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e057b409d80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e057b409e10>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7e057b59a340>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1703656193818701114,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA0sO77dD6g/kqauvn4asb6r+S6+3JSFvQAAAAAAAAAAM42RvUWFMj8mSH69FtGovhmBoLwywLk9AAAAAAAAAABmLam8jgyXvDGWnz1a5Pq8QOPWvVVIT74AAIA/AACAPz0/Yb7AaM8+UDVdPmOaTb7Jwqy8vgRWvQAAAAAAAAAAUs2GviEpGD/OnXU+Y8eNvkdr2bzyGvs9AAAAAAAAAACmsRY+1xpXPjKPCb794I6+WJUIPXoDKzwAAAAAAAAAAOiqz76WjpQ/YzlDvrGftL6sNYm+94oEPgAAAAAAAAAA2tulPStDqz0yrjq99pRuvjcUgDwbKVa9AAAAAAAAAAAbgaq+u118P+gI8r0ba46+yZF0vv+myz0AAAAAAAAAAGaA0LwUpIq6fa5Vte/TPq8fZPw5SFF2NAAAgD8AAIA/M/qSPBRYjrrwDAa0jo4Fr8k1w7nHdqIzAACAPwAAgD8Adqw8RMmlPQdFL7yrbT++aiuYuy6l8zwAAAAAAAAAAAAPBj6RfiA/UBIlvefFXL7Jh1g9JrUiPQAAAAAAAAAA4NEmvnVaiD+DG/G+t8fVvsgpA752BUW+AAAAAAAAAACAqmi9zP3dPgYKfj1mZIK+UFBbvER3Mj0AAAAAAAAAAMBZ/r3FLQM/3mpTPtc3iL6e14K8LwJMPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHB4w6ZH/caMAWyUTQcBjAF0lEdAkYm34j8k2XV9lChoBkdAcecdLg4wRGgHTWQBaAhHQJGRGXF98Z11fZQoaAZHQHDm2gSOBDpoB00jAWgIR0CRi/7XQMQVdX2UKGgGR0BL0z6zmfXgaAdNDgFoCEdAkZFP4h2W6nV9lChoBkdAcAzSXt0FKWgHTcwBaAhHQJGMp1GLDQ91fZQoaAZHQHGtEfxMFlloB01JAWgIR0CRk1ydWhh6dX2UKGgGR0BxEjJcPe54aAdNBAFoCEdAkY92YKIBR3V9lChoBkdAcLNNWU8mr2gHTSQBaAhHQJGVKGvfTCt1fZQoaAZHQHGFVMqSX+loB01lAWgIR0CRlTq+8Gs4dX2UKGgGR0BwsLhKlHjIaAdNNQFoCEdAkZVbxEv0y3V9lChoBkdAcJ/O/tY0VWgHTRkBaAhHQJGVVIFvAGl1fZQoaAZHQHGj3nuAqd9oB00dAWgIR0CRkLphWo3rdX2UKGgGR0Bw1dd4VymzaAdNUwFoCEdAkZHkNKAavXV9lChoBkdAc0kj4pMHr2gHTUYBaAhHQJGXq3kPtlZ1fZQoaAZHQHDFOpbUwztoB00tAWgIR0CRkyFocrAhdX2UKGgGR0BxOpokAxSHaAdNZAFoCEdAkZNIgV45cXV9lChoBkdAcQtLXtjTa2gHTWsBaAhHQJGZFFH8TBZ1fZQoaAZHQG8ELnDBMzxoB00rAWgIR0CRlS3WWhRJdX2UKGgGR0BwVfWAf+0gaAdNIgFoCEdAkZWg/X5FgHV9lChoBkdAbvX19ORDC2gHTUABaAhHQJGa/3sXzlN1fZQoaAZHQG+qdnscABFoB002AWgIR0CRmuKL876pdX2UKGgGR0Bw8g42jwhGaAdNFAFoCEdAkZvSOvMbFXV9lChoBkdAbujxz7uUlmgHTSEBaAhHQJGYLqQiiZh1fZQoaAZHQHAysWCVbA1oB00lAWgIR0CRnjezD4xldX2UKGgGR0BwMMxk/bCaaAdNEQFoCEdAkZkEFfReC3V9lChoBkdAbv3O9FnZkGgHTToBaAhHQJGesfLcKw91fZQoaAZHQHEUvXkHUttoB007AWgIR0CRnskrPMSsdX2UKGgGR0BwiLOiWVu8aAdNRQFoCEdAkZ8t3B55aHV9lChoBkdAbveFxn3+M2gHTS4BaAhHQJGbBGe+VTt1fZQoaAZHQHB4tcKPXCloB00tAWgIR0CRnHZIg/1QdX2UKGgGR0Bw0CwB5ooNaAdNMwFoCEdAkZx/zOHFgnV9lChoBkdAa0+fAbhm5GgHTVsBaAhHQJGiPeGfwql1fZQoaAZHQG+RQ1BMSK5oB00HAWgIR0CRnavg3tKJdX2UKGgGR0BwjRs+FDfFaAdNFgFoCEdAkaNvSx7iQ3V9lChoBkdAcp7wEyLyc2gHTSUBaAhHQJGePs1KoQ51fZQoaAZHQGv79+PRzBBoB00dAWgIR0CRo8Jr+HafdX2UKGgGR0BywR9oexOdaAdNaAFoCEdAkaQM2vStvHV9lChoBkdAcXMoKlYU4GgHTQ8BaAhHQJGhCKGcnVp1fZQoaAZHQHAvRy8zyjJoB00wAWgIR0CRoVGFi8WcdX2UKGgGR0ByYfqX4TK1aAdNGQFoCEdAkaek1hsqKHV9lChoBkdAckXMd92HL2gHTTcBaAhHQJGoNYT0xud1fZQoaAZHQHHAM5jpcHJoB01QAWgIR0CRqHBDXvphdX2UKGgGR0Bx/YIMSbpeaAdNUgFoCEdAkaj8/IKc/nV9lChoBkdAbhvUyYXwb2gHTR0BaAhHQJGjxu4wyqN1fZQoaAZHQHGgeh0yP+5oB03fAWgIR0CRqsmEXcgydX2UKGgGR0ByPHf4yoGZaAdNLAFoCEdAkaYapDNQj3V9lChoBkdAcdPM495hSmgHTSgBaAhHQJGr2X4TK1Z1fZQoaAZHQHIqzpkf9xZoB006AWgIR0CRuTJKraM8dX2UKGgGR0Bvh9urIYFaaAdNLgFoCEdAkboTVUdaMnV9lChoBkdAb0bopx3mm2gHTSEBaAhHQJG/ZOO801t1fZQoaAZHQHI5fWDpTuRoB00bAWgIR0CRv9/echC/dX2UKGgGR0BwHwI4VARkaAdNPgFoCEdAkbsAYpDu0HV9lChoBkdAbpXeF+NLlGgHTR0BaAhHQJG87t/nW8R1fZQoaAZHQHAwX5aePJdoB018AWgIR0CRwkPIGQjmdX2UKGgGR0BxWczEaVD8aAdNJwFoCEdAkb15ML4N7XV9lChoBkdAcFi8VHnU2GgHTRoBaAhHQJHDTMB6rvN1fZQoaAZHQHCsVhCtzS1oB00QAWgIR0CRw4BeXzDodX2UKGgGR0BwwFUxVQyiaAdNQQFoCEdAkcVcrVe8f3V9lChoBkdAcAcExIre7GgHTU0BaAhHQJHBNS0jTrp1fZQoaAZHQGwIl90A93doB00eAWgIR0CRxpAR02cbdX2UKGgGR0BuqJ5LRKHxaAdNYgFoCEdAkcclS88La3V9lChoBkdAbgR212JSBWgHTSMBaAhHQJHB4Orhisp1fZQoaAZHQHCfzTKDCgtoB00QAWgIR0CRwo1stTUBdX2UKGgGR0Bxy9WDHwPRaAdNMAFoCEdAkcfky+HrQnV9lChoBkdAcn3HyVfNRmgHTUYBaAhHQJHDSZ8a4tp1fZQoaAZHQHJt8zImw7loB00wAWgIR0CRyMizcAR1dX2UKGgGR0Bw6wZVGTcJaAdNKwFoCEdAkcklTvRZ2nV9lChoBkdAboK87IT4+WgHTUsBaAhHQJHFpkd3jdZ1fZQoaAZHQG1PgE2YOUdoB00cAWgIR0CRx2M5wOvudX2UKGgGR0BxiQmF8G9paAdNMAFoCEdAkcdvqs2ehHV9lChoBkdAcZnbsWweNmgHTU8BaAhHQJHOCy2QXAN1fZQoaAZHQG5l3xnWattoB004AWgIR0CRzo6guh9LdX2UKGgGR0BwXJJI1+AmaAdNOgFoCEdAkc7ajesPrnV9lChoBkdAbkBdt2s7uGgHTRgBaAhHQJHPxHTZxrB1fZQoaAZHQHH00aMrEtNoB00ZAWgIR0CRy+Rhc7hfdX2UKGgGR0ByRpQGfPHDaAdNJAFoCEdAkc1LeuV5bHV9lChoBkdAcmzl7+kxh2gHTVkBaAhHQJHUN1nuiN91fZQoaAZHQG9eoCU5dW1oB01AAWgIR0CRz6IomXw9dX2UKGgGR0BywM23rleXaAdNGgFoCEdAkdTKU3XI2nV9lChoBkdAb8UYaYNRWWgHTSsBaAhHQJHP8Hnlnyx1fZQoaAZHQG8ZBInSfDloB01HAWgIR0CR1V51vES/dX2UKGgGR0BsSFAqur6taAdNggFoCEdAkdbLuhK15XV9lChoBkdAcKpsPrfLtGgHTUUBaAhHQJHXC/RE4Nt1fZQoaAZHQHEt256MR6FoB00pAWgIR0CR0pF1SwW4dX2UKGgGR0BwUmT5ftx/aAdNJAFoCEdAkdQAeii7CnV9lChoBkdAcffnW8RL9WgHTSwBaAhHQJHUXKifxtp1fZQoaAZHQHEjd+LFXJZoB01JAWgIR0CR28Sy+pOvdX2UKGgGR0BtUi2QXAM2aAdNSQFoCEdAkdwq4Ds+mnV9lChoBkdAbGehL5AQhGgHTRIBaAhHQJHXInjQzDZ1fZQoaAZHQHB/jtLL6k9oB01TAWgIR0CR3dewLVnVdX2UKGgGR0BrYnq3VkMDaAdNdAFoCEdAkd5i7oSteXV9lChoBkdAcenCSA6Mi2gHTQwBaAhHQJHay/Zdv891fZQoaAZHQHGuT+ee4CpoB01GAWgIR0CR2vkvsZ5zdX2UKGgGR0Bw1sTIvJzUaAdNOAFoCEdAkeFQ0GeMAHV9lChoBkdAckQc32mHg2gHTS8BaAhHQJHcR/lQuVZ1fZQoaAZHQG81m2TgVGloB003AWgIR0CR4k/ub7TEdX2UKGgGR0BwGb0RODaoaAdNSQFoCEdAkeKQWSEDhnV9lChoBkdAch5XRw6ySmgHTSQBaAhHQJHi+kBS1md1fZQoaAZHQG8X1PepGWloB004AWgIR0CR5BqYqoZRdX2UKGgGR0BycH961LJ0aAdNMgFoCEdAkd9UBjnV5XVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f6e65f0508531150b9e9a19d020a770557de523ef34d448f1ff533d1d27e4f1
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a6d7cd9cae2d2dac8d9f5a8299cdd69a099aee41d9f4025d5cb25b9f6313249
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (184 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 259.46343360000003, "std_reward": 20.67272853933549, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-27T06:09:40.259077"}