ppo-lunarlander-v2 / config.json
lorenzoconti's picture
push LunarLander-v2 model
4ff1796
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8fb9c0baf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8fb9c0bb80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8fb9c0bc10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8fb9c0bca0>", "_build": "<function ActorCriticPolicy._build at 0x7f8fb9c0bd30>", "forward": "<function ActorCriticPolicy.forward at 0x7f8fb9c0bdc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8fb9c0be50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8fb9c0bee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8fb9c0bf70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8fb9c0f040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8fb9c0f0d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8fb9c07600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670672251086642589, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM04kjxs6qC7GmNpvXxjZb048wA9xuxEPgAAgD8AAIA/sxQPPUiRgLqtapC6TSUPtMFhJrs+g6Y5AACAPwAAgD8zj4i7j1ZWumKGR7pRGie1dh23uXunajkAAIA/AACAP9rxpD2hU6M+WckNOrmHYb4O0Bc9VR29vAAAAAAAAAAADeuVvVu9QD8jd0o+q5x/vkHJPr3hcqs9AAAAAAAAAACmDgk+7/12Ptjl+r27kFW+a+TcPKbtHD0AAAAAAAAAAMM2pj4H8Cg/lrODvtYdnr7o3xA+S0OCvgAAAAAAAAAAWs+FPsxAtj7g/dC+OZVlvmy9wTseoFe+AAAAAAAAAACaxaY8PbUdu57yLr4z7xC+jEHkOc2Koz4AAIA/AAAAAA23GT6Pl1M/YpgCPsSNrL51QvE98IncugAAAAAAAAAAM46dvPYEAroF+2u7/x6atsBU5bnGFQ42AACAPwAAgD9mhki8PfoguV4VOzplePW11Apiu2jtW7kAAIA/AACAP81XOT2P7ma6qhB8OXwnVDSB69k6ttOTuAAAgD8AAIA/WmeMvgnpkD+2EGa+kSivvta+xb5rM4A9AAAAAAAAAAAzq9w9x4woPjDL1L3UPEC+n55lvNAwTL0AAAAAAAAAAO0wDD4F1+27Kg3uujuZwTjqUjy9l3MdOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBitOtRYxZECUhpRSlIwBbJRN6AOMAXSUR0CkDUry1/lRdX2UKGgGaAloD0MIHjNQGX8BYkCUhpRSlGgVTegDaBZHQKQNbd56dDp1fZQoaAZoCWgPQwjVdhN80+AwQJSGlFKUaBVL5WgWR0CkDdJYs/Y8dX2UKGgGaAloD0MIHHv2XKYkU0CUhpRSlGgVS8poFkdApBCka86FNHV9lChoBmgJaA9DCCwujspNAWNAlIaUUpRoFU3oA2gWR0CkEL5/kNnXdX2UKGgGaAloD0MIeAjjp3G7VUCUhpRSlGgVS9FoFkdApBDXWtlqanV9lChoBmgJaA9DCN/gC5MpUmhAlIaUUpRoFU3oA2gWR0CkEvvzFuNxdX2UKGgGaAloD0MIL6NYbmnHSkCUhpRSlGgVS85oFkdApBlRVn27F3V9lChoBmgJaA9DCNWXpZ2asGRAlIaUUpRoFU3oA2gWR0CkJMo4uK4ydX2UKGgGaAloD0MIxlG5idqqZUCUhpRSlGgVTegDaBZHQKQlfk3juKJ1fZQoaAZoCWgPQwgMWd3qOR5bQJSGlFKUaBVN6ANoFkdApCXBe1KGtnV9lChoBmgJaA9DCBOe0OtPqmNAlIaUUpRoFU3oA2gWR0CkJy6PsAvMdX2UKGgGaAloD0MIfgG9cOcuY0CUhpRSlGgVTegDaBZHQKQnNpPAO8V1fZQoaAZoCWgPQwgPmIdMeadiQJSGlFKUaBVN6ANoFkdApCdG3z+WGHV9lChoBmgJaA9DCPEpAMYzaGFAlIaUUpRoFU3oA2gWR0CkMhbWVeKLdX2UKGgGaAloD0MI+3YSEX6BYUCUhpRSlGgVTegDaBZHQKQyk9bHIZJ1fZQoaAZoCWgPQwhGmKJcGvVlQJSGlFKUaBVN6ANoFkdApDK5AGB4EHV9lChoBmgJaA9DCMN95Naks2dAlIaUUpRoFU3oA2gWR0CkMxvLHMlkdX2UKGgGaAloD0MIQ8cOKnFDZUCUhpRSlGgVTegDaBZHQKQzVidat9x1fZQoaAZoCWgPQwg17zhFR4xhQJSGlFKUaBVN6ANoFkdApDPdtdiUgXV9lChoBmgJaA9DCEZ8J2a9Lk5AlIaUUpRoFUvtaBZHQKQ0zrylN111fZQoaAZoCWgPQwiwjuOHSoBkQJSGlFKUaBVN6ANoFkdApDdDW3BpH3V9lChoBmgJaA9DCMGnOXkRwGNAlIaUUpRoFU3oA2gWR0CkN15X+2mYdX2UKGgGaAloD0MIYf2fw/zqZECUhpRSlGgVTegDaBZHQKQ3ejkdWAB1fZQoaAZoCWgPQwhli6Td6DVhQJSGlFKUaBVN6ANoFkdApD/0z67/XHV9lChoBmgJaA9DCK98lufBDWdAlIaUUpRoFU3oA2gWR0CkS1SRbKRudX2UKGgGaAloD0MI0egOYmf5Z0CUhpRSlGgVTegDaBZHQKRMD9zfaYh1fZQoaAZoCWgPQwhkd4GSAhBiQJSGlFKUaBVN6ANoFkdApE4Cz5XU6XV9lChoBmgJaA9DCEDeq1amLWRAlIaUUpRoFU3oA2gWR0CkTgsRHww1dX2UKGgGaAloD0MI+kZ0z7qjXUCUhpRSlGgVTegDaBZHQKROGzdk8Rt1fZQoaAZoCWgPQwj6RnTPOtViQJSGlFKUaBVN6ANoFkdApE/GFJxvN3V9lChoBmgJaA9DCJTeN752GWNAlIaUUpRoFU3oA2gWR0CkWYoZhrnDdX2UKGgGaAloD0MIbM7BMyEmZkCUhpRSlGgVTegDaBZHQKRZsOBlMAZ1fZQoaAZoCWgPQwhKtrqckhBlQJSGlFKUaBVN6ANoFkdApFoeuoxYaHV9lChoBmgJaA9DCMN/uoEC+mJAlIaUUpRoFU3oA2gWR0CkWl3VLBbfdX2UKGgGaAloD0MIpDfcR+4bZkCUhpRSlGgVTegDaBZHQKRa9WGRFJB1fZQoaAZoCWgPQwgDzlKynONiQJSGlFKUaBVN6ANoFkdApFwKwKSgXnV9lChoBmgJaA9DCEmFsYWgQWVAlIaUUpRoFU3oA2gWR0CkXpk+xGDudX2UKGgGaAloD0MIAtiACHEBYkCUhpRSlGgVTegDaBZHQKRes+A3DN11fZQoaAZoCWgPQwgO2quPB99gQJSGlFKUaBVN6ANoFkdApF7LollbvHV9lChoBmgJaA9DCGvY74l1ZF5AlIaUUpRoFU3oA2gWR0CkZ9HkcS5BdX2UKGgGaAloD0MIrTO+Ly64W0CUhpRSlGgVTegDaBZHQKRz5/zasZJ1fZQoaAZoCWgPQwj/ykqT0rRkQJSGlFKUaBVN6ANoFkdApHSyiVSn+HV9lChoBmgJaA9DCIB/SpWot2FAlIaUUpRoFU3oA2gWR0Ckdo1jqfOEdX2UKGgGaAloD0MIvvbMkgCkYUCUhpRSlGgVTegDaBZHQKR2lag26091fZQoaAZoCWgPQwipM/eQ8NteQJSGlFKUaBVN6ANoFkdApHamYx+KCXV9lChoBmgJaA9DCOwy/KebXWdAlIaUUpRoFU3oA2gWR0CkeGoGIKtxdX2UKGgGaAloD0MIt/EnKhtSYECUhpRSlGgVTegDaBZHQKR47kOqebx1fZQoaAZoCWgPQwgTglX18r1mQJSGlFKUaBVN6ANoFkdApHkbE74i5nV9lChoBmgJaA9DCEI/U6/bZ2FAlIaUUpRoFU3oA2gWR0CkgtZAIIGAdX2UKGgGaAloD0MIhjsXRnooY0CUhpRSlGgVTegDaBZHQKSDFBzmwJR1fZQoaAZoCWgPQwi4QILiR1JiQJSGlFKUaBVN6ANoFkdApIOdpAUtZnV9lChoBmgJaA9DCLMj1Xd+nmNAlIaUUpRoFU3oA2gWR0CkhI4VARkFdX2UKGgGaAloD0MILpCg+DH0ZECUhpRSlGgVTegDaBZHQKSGtuaWom51fZQoaAZoCWgPQwiY4NQHkidnQJSGlFKUaBVN6ANoFkdApIbNsLv1DnV9lChoBmgJaA9DCGa9GMoJq2NAlIaUUpRoFU3oA2gWR0CkhuMh5gPVdX2UKGgGaAloD0MI88e0No1LT0CUhpRSlGgVS8loFkdApIeTUExIrnV9lChoBmgJaA9DCEUOETenTGFAlIaUUpRoFU3oA2gWR0CkjigAIY3vdX2UKGgGaAloD0MI/b0UHjTMY0CUhpRSlGgVTegDaBZHQKSX/DVpbll1fZQoaAZoCWgPQwhPQBNhQwJiQJSGlFKUaBVN6ANoFkdApJihHqeK9HV9lChoBmgJaA9DCNhl+E83ImhAlIaUUpRoFU3oA2gWR0Ckmjj+JgstdX2UKGgGaAloD0MINgNckC3SZkCUhpRSlGgVTegDaBZHQKSaQKMvRJF1fZQoaAZoCWgPQwh6bTZWYmRnQJSGlFKUaBVN6ANoFkdApJpPcQAdXHV9lChoBmgJaA9DCACt+fEX2GRAlIaUUpRoFU3oA2gWR0Ckm8wbMotudX2UKGgGaAloD0MI5US7Cil3YUCUhpRSlGgVTegDaBZHQKScPaqS5iF1fZQoaAZoCWgPQwgah/pdWM9jQJSGlFKUaBVN6ANoFkdApJxf6be/H3V9lChoBmgJaA9DCAJnKVlODV5AlIaUUpRoFU3oA2gWR0CknLzkQwsYdX2UKGgGaAloD0MI6dSVz3LjZ0CUhpRSlGgVTegDaBZHQKSc87/4qPR1fZQoaAZoCWgPQwjKcDyfgRlhQJSGlFKUaBVN6ANoFkdApKvcqc3ERHV9lChoBmgJaA9DCKmgoupX5GZAlIaUUpRoFU3oA2gWR0Ckrl606YE4dX2UKGgGaAloD0MIpfW3BGAhZ0CUhpRSlGgVTegDaBZHQKSudwuM+/x1fZQoaAZoCWgPQwi6TiMtFRdkQJSGlFKUaBVN6ANoFkdApK6OmrKeTXV9lChoBmgJaA9DCEoKLIApeWhAlIaUUpRoFU3oA2gWR0Ckr1h+nZTRdX2UKGgGaAloD0MI9z5VhQbuY0CUhpRSlGgVTegDaBZHQKS2cSQo1DV1fZQoaAZoCWgPQwiY/E/+7phlQJSGlFKUaBVN6ANoFkdApMFL7Q9idHV9lChoBmgJaA9DCD+LpUg+4GRAlIaUUpRoFU3oA2gWR0CkwfOaOPvKdX2UKGgGaAloD0MI34yarxJgZUCUhpRSlGgVTegDaBZHQKTDk5wwTM91fZQoaAZoCWgPQwiPM03YfqxjQJSGlFKUaBVN6ANoFkdApMObS9du53V9lChoBmgJaA9DCBwmGqTgBGFAlIaUUpRoFU3oA2gWR0Ckw6lvhqCZdX2UKGgGaAloD0MIa54j8t2taECUhpRSlGgVTegDaBZHQKTFH101ZT11fZQoaAZoCWgPQwjMe5xpQm1mQJSGlFKUaBVN6ANoFkdApMWK3d9DyHV9lChoBmgJaA9DCPJbdLJUOGBAlIaUUpRoFU3oA2gWR0CkxawTEit8dX2UKGgGaAloD0MIW5pbIayUXkCUhpRSlGgVTegDaBZHQKTGB8wYced1fZQoaAZoCWgPQwgO+WcG8dFhQJSGlFKUaBVN6ANoFkdApMY69CeEqXV9lChoBmgJaA9DCDkLe9phRWNAlIaUUpRoFU3oA2gWR0Ck0OsCLdeqdX2UKGgGaAloD0MIZHRAEvZ2XUCUhpRSlGgVTegDaBZHQKTTNU1AJLN1fZQoaAZoCWgPQwjiIvd09ahmQJSGlFKUaBVN6ANoFkdApNNNkxyn1nV9lChoBmgJaA9DCNl78UX7HGZAlIaUUpRoFU3oA2gWR0Ck02TsQd0adX2UKGgGaAloD0MI7KaU10rXYUCUhpRSlGgVTegDaBZHQKTUNbFCLMt1fZQoaAZoCWgPQwh0mZoEb5leQJSGlFKUaBVN6ANoFkdApNtGU6gdwXV9lChoBmgJaA9DCIWZtn9lc1tAlIaUUpRoFU3oA2gWR0Ck5ZiaZx7zdX2UKGgGaAloD0MIh4px/iZmZkCUhpRSlGgVTegDaBZHQKTmOZpBX0Z1fZQoaAZoCWgPQwj3kVuT7pZhQJSGlFKUaBVN6ANoFkdApOfVRaX8fnV9lChoBmgJaA9DCO0L6IU7z11AlIaUUpRoFU3oA2gWR0Ck59yaEzwddX2UKGgGaAloD0MIzjY3pqeWZECUhpRSlGgVTegDaBZHQKTn60l7dBV1fZQoaAZoCWgPQwgrFyr/2vBgQJSGlFKUaBVN6ANoFkdApOlErd30PHV9lChoBmgJaA9DCHgMj/2sXWdAlIaUUpRoFU3oA2gWR0Ck6bBwl0HRdX2UKGgGaAloD0MI4WJFDSZfYUCUhpRSlGgVTegDaBZHQKTp0t4iX6Z1fZQoaAZoCWgPQwj5odKImTFjQJSGlFKUaBVN6ANoFkdApOose4kNWnV9lChoBmgJaA9DCLkzEwxnomRAlIaUUpRoFU3oA2gWR0Ck6l4c/+sHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}