Sudong Wang commited on
Commit
25a8394
Β·
verified Β·
1 Parent(s): bee258f

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - Qwen/Qwen2.5-VL-7B-Instruct
4
+ datasets:
5
+ - longvideotool/LongVT-Parquet
6
+ license: apache-2.0
7
+ library_name: transformers
8
+ pipeline_tag: video-text-to-text
9
+ ---
10
+
11
+ # LongVT: Incentivizing β€œThinking with Long Videos” via Native Tool Calling
12
+
13
+ <div align="center">
14
+
15
+ [![Data](https://img.shields.io/badge/Data-0040A1?style=for-the-badge&logo=huggingface&logoColor=ffffff&labelColor)](https://huggingface.co/collections/lmms-lab/longvt)
16
+ [![Paper](https://img.shields.io/badge/Paper-000000?style=for-the-badge&logo=arxiv&logoColor=white)](https://arxiv.org/abs/2511.16334)
17
+ [![Project Page](https://img.shields.io/badge/Website-000000?style=for-the-badge&logo=google-chrome&logoColor=white)](https://evolvinglmms-lab.github.io/LongVT/)
18
+ [![Github](https://img.shields.io/badge/Code-000000?style=for-the-badge&logo=github&logoColor=white)](https://github.com/EvolvingLMMs-Lab/LongVT)
19
+ </div>
20
+
21
+ ## Overview
22
+
23
+ Large multimodal models (LMMs) have shown great potential for video reasoning with textual Chain-of-Thought.
24
+ However, they remain vulnerable to hallucination, especially when processing long-form videos where evidence is sparse and temporally dispersed.
25
+ Inspired by how humans comprehend long videos-by first skimming globally and then examining relevant clips for details-we introduce **LongVT**, an end-to-end agentic framework that enables ``Thinking with **Long** **V**ideos'' via interleaved Multimodal Chain-of-**T**ool-Thought.
26
+ Specifically, we exploit LMMs' inherent temporal grounding ability as a native video cropping tool to zoom in on a specific video clip and resample finer-grained video frames.
27
+
28
+ This global-to-local reasoning loop continues until answers are grounded in retrieved visual evidence.
29
+ Given the scarcity of fine-grained question-answering (QA) data for the long video reasoning task, we curate and will release a data suite named **VideoSIAH** to facilitate both training and evaluation.
30
+ Specifically, our training dataset consists of 247.9K samples for tool-integrated cold-start supervised fine-tuning, 1.6K samples for agentic reinforcement learning, and 15.4K samples for agentic reinforcement fine-tuning, respectively.
31
+ Our evaluation benchmark consists of 1,280 QA pairs that are carefully curated through a semi-automatic data pipeline with human-in-the-loop validation.
32
+ With a meticulously designed three-stage training strategy and extensive empirical validation, LongVT consistently outperforms existing strong baselines across four challenging long-video understanding and reasoning benchmarks.
33
+
34
+
35
+ ## Model Card
36
+
37
+ The model is the RL version of the LongVT and was trained on https://huggingface.co/datasets/longvideotool/LongVT-Parquet.
38
+
39
+ ## Usage & Evaluation
40
+
41
+ For detailed instructions on inference and evaluation, please refer to our [GitHub repository](https://github.com/EvolvingLMMs-Lab/LongVT). We recommend using the scripts and environment provided there to reproduce our results.
42
+
43
+ ## Evaluation Results
44
+
45
+
46
+ | Model | Reasoning Prompt | Tool Calling | VideoMME<br>(β‰ˆ1018s) | VideoMMMU<br>(subtitle) | VideoMMMU<br>(adaptation) | VideoMMMU<br>(comprehension) | LVBench<br>(β‰ˆ4101s) | VideoSIAH-Eval<br>(β‰ˆ1688s) | Average Score |
47
+ | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
48
+ | **Proprietary LMMs** | | | | | | | | | |
49
+ | GPT-4o | βœ— | βœ— | 77.2<sup>†</sup> | 66.0<sup>†</sup> | 62.0<sup>†</sup> | 55.7<sup>†</sup> | 30.8<sup>†</sup> | 17.4 | 51.5 |
50
+ | Gemini 1.5 Pro | βœ— | βœ— | 81.3<sup>†</sup> | 59.0<sup>†</sup> | 53.3<sup>†</sup> | 49.3<sup>†</sup> | 33.1<sup>†</sup> | - | 55.2 |
51
+ | **Open-Source (Sparse)** | | | | | | | | | |
52
+ | Qwen2.5-VL-7B | βœ— | βœ— | <u>62.6</u> | <u>37.3</u> | 28.0 | 36.7 | 30.7 | <u>28.1</u> | 37.2 |
53
+ | Video-R1-7B | βœ“ | βœ— | 61.0 | 36.3 | 40.7 | 52.3 | 37.2 | 27.9 | <u>42.6</u> |
54
+ | VideoRFT-7B | βœ“ | βœ— | 60.9 | 36.7 | 42.0 | <u>53.0</u> | 34.7 | 26.5 | 42.3 |
55
+ | Video-Thinker-7B | βœ“ | βœ— | 61.0 | 34.3 | <u>44.7</u> | <u>53.0</u> | **52.2** | 10.4 | <u>42.6</u> |
56
+ | LongVT-7B-SFT (Ours) | βœ“ | βœ“ | 12.5 | **37.7** | **46.0** | **58.3** | 36.0 | 26.8 | 36.2 |
57
+ | **LongVT-7B-RL (Ours)** | βœ“ | βœ“ | **66.1** | 32.7 | <u>44.7</u> | 50.0 | <u>37.8</u> | **31.0** | **43.7** |
58
+ | **Open-Source (Dense)** | | | | | | | | | |
59
+ | Qwen2.5-VL-7B | βœ— | βœ— | 64.3 | 35.7 | **44.3** | **56.7** | 40.9 | 33.8 | 46.0 |
60
+ | Video-R1-7B | βœ“ | βœ— | 60.5 | <u>37.3</u> | 38.7 | 46.3 | 40.1 | 33.1 | 42.7 |
61
+ | VideoRFT-7B | βœ“ | βœ— | 49.2 | **37.7** | 40.7 | 48.7 | 18.7 | 26.9 | 37.0 |
62
+ | Video-Thinker-7B | βœ“ | βœ— | 60.8 | **37.7** | 42.7 | 55.3 | **54.3** | 6.6 | 42.9 |
63
+ | LongVT-7B-SFT (Ours) | βœ“ | βœ“ | 64.9 | 32.3 | 42.0 | 49.7 | 41.1 | 34.8 | 44.1 |
64
+ | LongVT-7B-RL (Ours) | βœ“ | βœ“ | <u>66.1</u> | **37.7** | 42.3 | <u>56.3</u> | <u>41.4</u> | <u>35.9</u> | <u>46.6</u> |
65
+ | **LongVT-7B-RFT (Ours)** | βœ“ | βœ“ | **67.0** | 35.7 | <u>43.7</u> | **56.7** | 41.3 | **42.0** | **47.7** |
66
+
67
+ > **Performance Comparison with Existing Video-Centric LMMs across Various Long Video Understanding and Reasoning Benchmarks.** The best and second-best result among open-source models in each column is marked in **bold** and <u>underlined</u>, respectively. The numbers with "β‰ˆ" denote the average video duration of each benchmark. <sup>†</sup> indicates results sourced from official reports. **Reasoning Prompt** indicates whether a standard reasoning-style prompt (βœ“) or a direct question-answering prompt (βœ—) is applied; **Tool Calling** denotes whether native tool calling is enabled (βœ“) or disabled (βœ—) in the prompt.
68
+
69
+ ## Citation
70
+
71
+ If you find LongVT useful for your research and applications, please cite using this BibTeX:
72
+
73
+ ```bibtex
74
+ @misc{zhang2025openmmreasonerpushingfrontiersmultimodal,
75
+ title={OpenMMReasoner: Pushing the Frontiers for Multimodal Reasoning with an Open and General Recipe},
76
+ author={Kaichen Zhang and Keming Wu and Zuhao Yang and Kairui Hu and Bin Wang and Ziwei Liu and Xingxuan Li and Lidong Bing},
77
+ year={2025},
78
+ eprint={2511.16334},
79
+ archivePrefix={arXiv},
80
+ primaryClass={cs.AI},
81
+ url={https://arxiv.org/abs/2511.16334},
82
+ }
83
+ ```
84
+
85
+ ## Acknowledgements
86
+
87
+ We gratefully acknowledge the following open-source projects that made this work possible:
88
+
89
+ - [**lmms-eval**](https://github.com/EvolvingLMMs-Lab/lmms-eval) for providing the comprehensive evaluation framework for large multimodal models.
90
+ - [**lmms-engine**](https://github.com/EvolvingLMMs-Lab/lmms-engine) for the SFT training infrastructure and tools.
91
+ - [**verl**](https://github.com/volcengine/verl) for the reinforcement learning training framework.
92
+
93
+ We thank the developers and contributors of these projects for their excellent work and for making their code publicly available.