First Model
Browse files- README.md +1 -1
- config.json +1 -1
- model1000000.zip +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 248.84 +/- 43.14
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7db3300f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7db3301000>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7db3301090>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7db3301120>", "_build": "<function ActorCriticPolicy._build at 0x7f7db33011b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7db3301240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7db33012d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7db3301360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7db33013f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7db3301480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7db3301510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7db34efec0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVLAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDGMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAADRh1t2iBiAcQYrYuNxDvb48uwfLNckJkxr8woldwZOw3P4anLZr3j6Szc6xZZHsmPiO5M0ag+TzkmGx7gKSujGyR8SDUP1z9NRETo/xg+b8CnPrk6G1KvzdbYotDeGq/vjdvPpUlmdanQuLqAzA81p9tfqMkx1nK4vFTvWWjGSiP9LnH43lFRFQ8mIj+D3OYYEbmDncI9dMrwuxREyQ2lZzWvR8gjSW1dRg7kEjfgAfmL9YsZv126Y0YJgI5oL+hbBHrA+q7J7wkuctE7oVRSkGqqps1KXUPgyrCZIwhl6eGbXCge5hxu5/9GbsxDsXMAq2nymTV+i5r+QY3bEVHbhvMelAnQd73iJW4IDqsmHwRJ8j3oNIVszF1th5bwhp1oXtF6l89CNOYAJxNwb6VuR3zHYEvWeqk4J4GZ3HnydtQRHyDK9LddrWC909kLaHPFHd63pklBPVb7ZeyRKuPRkVRwt0hHxLpIAqfhxQKuLFY3CyNySVvHouY+NCNPOPszWFIxyPBA+oCz4rHK919kkDMhZ1gT3I42hcH+FaWDx5LqUdim7hsj5Oly8RI1ROipOVF/krbH759I7UxvwEJ+LuToDSXOh7VE2I32SLmXkJ8bi0pZQKKNat9rbnGnRDQBGamyTGsWHH5L1DrrqN/ethEmPemuzMxkrFN5RjlC7+LHW6FjzI3wgvOWKyrE0cRBJiTdSClbZg9mpomPvc/PB47+PqwhTDrygyvampYByep4ai073YjJHFoSVPTWr6aAmkhdFRMUzyFtpYFdUgZBI/XNnlJafPKR4yDniD1ttS7n+F3P7DcdruYNbpchz+8LG0sd9iLSnR8JcWHhgS7uKyCGm48NWYMOQs99VPgCH6gpdHXrKxq1akmytkLMDJEsTdZm0aNcoVq05Q1IurSW2s8PAW8n13mHg9Gy8p68e5GlSgyfq04/eoJt3AOrNopYuLX1EVRn7h2hVmmo4HQx0o0SICEeEwNaO0D4oFDWe8lRNOGKwXtGMItkhATfeIba6WPIteEroTMtANKE35oGqe5ritzseD1MkKiV49Zz83CZYj/T5G77K59Rtd8b/F/RzpS3Z7Zfgq/2xPV28kb6ePRqRXPpOPfbsj5CDtWDcuKKQ61vDTMLLt0JUX416EIKtx0PnbyNhT4YOFzLElgDytybf/iJ8Bb53L9SDBsTtn+UzW2mu3I9zVcuUs+Q8FgdbLa1EIp7nKd7Fy3ritaYntn44/IASGcyya7AVY5IcdzJoQqi4VBQ6TRq3phRB4Xy6upYQOlbNrA5ZrKeNBgzUyg0LW3RnJwpBz/xZ4Hb32LM/gRBYnUJ8hU/9zBwtaCMPk4H1/fJS48Gv3pCdQW9eyhd5i5CrcjrOir2/aIAJi2szmppVArIuxtvNXYWlHAMd/tq1Ft6Uiz6NxFmA1zvuNBsqhPHX9Vvmj7zKlShzcTUW8Lt/6/Nk2i5oSCcxahGjExOcyEhxdR88LZs2+aIQAhpi+LJYj+e9VLYauwk9xGCP7u5OKQpW5WNHlZ2vJIBdHGxD/XHzLRJ1JB9CEC2hRU3AzWkVhEmzBDM6KQ15AbNu1I0bZ/ZA8U0kliazbGK+VCuY/N7tywv7365Q+csZ1kUdNtVhL36cAaMtAIhBRjirBBXPz6xbalwkK5xU/M0ojrxRUq9b2je0jV0LALMD0P95liVjMpdDo8hjEcNiSrSy76+gRgSDYN7xPP1IiT0oEtXZmajxi4xZfzv3tNJgaObDodwUEZ6W/vAoHASSysE0KIZ8FJsEpj8XHOM49sEVLJWWutCTQT+XIM7MwSgDu2/4zREiMegIgQ7QX9dd60kaU0Rvrlnfqlol9mmSFrBEe0LDoPIgiTWxNhGtO5f+fkTzipJjW5cjLGxDyk3raF2C4BYuQI6dQDOx4B0UV9CDC5wf0j/hHttjTNDdFPpLtYZi4ZmpTe+UrML8PFZXCAbKf0dvFpgJVY/G6NeoeUDfdunFlNpN5RkhT4wljSjtMTlRIl5k+3FvMwDn7otbW9olNtLlZLjAmXL+MsgfOyH3hBufTMLA8Zrzrzr4OnRZ+CjmG/VNqQh1fqKMJefbQ2mQXLK7gRt9DY4jtpr/iODnHYEpZFx5ENWgOq61bCNPzPslSwFPg/ttoHXMIk9J06lppHtYq1LnrRd7TF8FH8IZX1XJuwLsMm6sCEqG+U4KkaLdcNIuqDZlZSr+D3uCyKaf3ULfLkjw0LxQwLFketApMFS2ymEm4Zr/UnTpeKkeKy6L/SC0v/06VKxKJ7pjSJGXRFhTMfMgrE2u3eraE+GAh9sNbz8xxefsIANe+CqHmBA47vx9Zu3XB2opCKynmmYVXnFGg0lnYocOXR2+QfDHR1ss69ct2PC0UL7N9RWoNOvSBDYViURgI5wCoY0rL8URc+gUYwHY1a/Wcs5no0GDBqJYwzdPuJVwh+TbDbXESj9jiDKkDLFk2QolJg522cz7QMpu8/UYnlAwldt7Y1v6uF0NUQBHSwC3Xysr/BCa87yz55CzQW1jxYbs6SuWQroMTcu5nuAzREWwiVHOMrbkoLqCfRe321AdLAqLh8aPw2sPFFiIDB4Wc2Jsa2gvkj0vBUD8Hk8lLU6XDfrWIICNP9w6/rblTeIIH3orB6lA6me3DudNkpNDoZ7zh3yzqFqtBjnbQMZyQal19M02t7wOcnO7K8ww9mpEVbRrHjmLDiWoI8xCyTeMpqrHyeYufh4yGDbjS5sKUhySJCEtJOViZ3J0C29jB77jPjOLvLKaLYNdCcTsXYlS0l9VyW9pg4TnMM9Yh5GoBX6kM8KR7mk3h769rwVEkqOLcS5PeXNSYoVMy8WxrrZZobanvl4lC18sk7L+NFv9bhXNX9yTyhZJGwkuiHSGupJ2+df2EnyUnuqZ9OEu+td08Ch4wJeAvPW4IeJXFmWiixAOvHXG2w4oYdnJOQAOsT9eaY8sBXX+75zr/2oLfrJ/NJCZo10gGI5qejV565hRnDQjp5y5zp/VEkzg3HCRoMg4xXMTw2ruiBlG0PmEGy9RC2rMkqR0epEI4fBsXEZee9fJVpeExBNDTV4oSLTDPXc80GIIfr95AeTgaa7Helb+yh3f2brW7larsDXZrxC3seGBIqM38QQVO0SWdFboNqRHtVHOkAZ5ip2qPgRA+EVT5MKmorvOb1Wa9Pw3vwuC1mOwH9Z+7SGvnStowFrvUsCNNkjT6iqeVbkhuNSWQ42vP1S2QA+RG9G70ME4cgiVkxxGtrFz8HIJ8C6LlnGWKRTDtWiyKF93fBSIclKPxqibIL3aJIc19n6Tf6eKgF+CJgFHSo/eLZJRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlEsYdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1048576, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670541748440851299, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3Vnby8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS91Z28vLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJDz976Niky9mmp4O8KsLzkCSv68efo8OgAAgD8AAIA/0ylyPkFdxLwSJqO7gfgDOvvRLr7hw7g6AACAPwAAgD8AmEG8XL8uupxxjTkkRYo00lOFO/siqLgAAIA/AACAPyrLiD7HhC0/qY4ZPv7Gvb7SlF09hrwnvQAAAAAAAAAAmuR5PVyDN7pYBFS7zRXItuGhTToLt3Y6AACAPwAAgD868CS+7BWku/deMb35Mxa7tMAMPdqI4DsAAIA/AACAPyB2Jr6kf3O7otFcO76qTryqkrw8uaQxPQAAgD8AAAAA87MZP2TjGr7uM164mZkkNeN357w8xSu3AACAPwAAgD/mVB09PbonuWYoFzqaV9s0CJMKOQUhOLkAAIA/AACAP0hW3L5BFhK9lR7but+3mTj87GO96dkaOgAAgD8AAIA/GoPeveEa9LiQK+i5trD/tf+2Yzt/fAo5AACAPwAAgD/DgzQ/R/hfvusbX7thJI24/qx2PZULujgAAIA/AACAPwCuvzzDCS+6K4eFO57iqDbhRqU6KtuXugAAgD8AAIA/+0oVP1Lm+b0yPpm7YJ1gOa6fsrurfpw6AACAPwAAgD8mnNE9XxCFPzxSgD65Osi+JBnKPQDV17wAAAAAAAAAACA0P74sFZU/hQ+gvuQw9b4ZCRu+QoFbvQAAAAAAAAAAn7kFvz0RTjzyk1U6AXHzOBP2SD7aHMW5AACAPwAAgD8NdYk9e7SjuFY1YLwDLmG8H5CJuygNZrwAAAAAAAAAAKKjnb5UKbO8FfKEuRGsiLd+Sgk+qr8wNwAAgD8AAIA/miMDPsapNz/SIW09tw/FvjGVzD0Zcpq8AAAAAAAAAAAz8WA/hB+vvt2wEz9yoVG8m2LWOn4R3j0AAAAAAAAAAI3k1732YGa6u0eFurUe9zWPov66GeKaOQAAgD8AAIA/zdToO01yDT6pugQ+s11DviJ+lb1N7/o9AAAAAAAAAABd0MM+bUm0Pq60NjuWk72+FAjAPStK070AAAAAAAAAAIMQkL5H7zG9e7crvgqaqryfbJ0+jep3PQAAgD8AAIA/s97dvRSGk7owH4y7AJddOIdSH7uKG6c2AACAPwAAgD9m5ps+dmIOPf2Y1rzRE267O2tXPlQ5QzkAAIA/AACAP2ZiDL1I+fE5cJB0u1O6yjh5EQm6oAyUOgAAgD8AAIA/UBquPtUqSD7w0c+9ZQyCvmcmtDzul8s9AAAAAAAAAACGHks+UsjiPG6mNDlfxBE4Cjx5PrqcjLgAAIA/AACAPwCWezzsqfS5SmTXOzLEGru0YuA4zFQHPAAAgD8AAAAAmsMvPVLYvLmi5B07snNfOC8nqDu4I1C5AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMCqpE9CYPkCUhpRSlIwBbJRLqIwBdJRHQIPWkM3IdU91fZQoaAZoCWgPQwi0dAXbiGZaQJSGlFKUaBVN6ANoFkdAg9fK5CngpHV9lChoBmgJaA9DCCic3VqmgGBAlIaUUpRoFU3oA2gWR0CD4IqSX+l1dX2UKGgGaAloD0MIeO3ShkPjYECUhpRSlGgVTegDaBZHQIPvNwLmZE51fZQoaAZoCWgPQwhmSutviT5gQJSGlFKUaBVN6ANoFkdAg/fFU6xPf3V9lChoBmgJaA9DCO3YCMTrgVFAlIaUUpRoFU3oA2gWR0CD/PtO2y9mdX2UKGgGaAloD0MISOAPP/9UWkCUhpRSlGgVTegDaBZHQIP+QRGtp251fZQoaAZoCWgPQwhKfVnaqUlNQJSGlFKUaBVN6ANoFkdAhA22d3B55nV9lChoBmgJaA9DCKBwdmuZwkNAlIaUUpRoFU3oA2gWR0CEFCJdB0IUdX2UKGgGaAloD0MIbAcj9gloP0CUhpRSlGgVTegDaBZHQIQcuNT987Z1fZQoaAZoCWgPQwh3E3zT9AlgQJSGlFKUaBVN6ANoFkdAhCW/IS13MnV9lChoBmgJaA9DCNC3BUv1WGBAlIaUUpRoFU3oA2gWR0CEJkZk078vdX2UKGgGaAloD0MInbzIBPxSMsCUhpRSlGgVS+toFkdAhCgLDQ7cPHV9lChoBmgJaA9DCPBQFOgT21xAlIaUUpRoFU3oA2gWR0CEL106HTJAdX2UKGgGaAloD0MI+b64VKVMWkCUhpRSlGgVTegDaBZHQIQvu07bL2Z1fZQoaAZoCWgPQwiQ9GkV/bhbQJSGlFKUaBVN6ANoFkdAhDK4CyQgcXV9lChoBmgJaA9DCN9Szhd7rwRAlIaUUpRoFU0MAWgWR0CEPKW69TP0dX2UKGgGaAloD0MI9S1zuiy0VECUhpRSlGgVTegDaBZHQIRBORcNYr91fZQoaAZoCWgPQwimme51UtdJQJSGlFKUaBVLuWgWR0CERaVu76HkdX2UKGgGaAloD0MIu7ThsDQAK8CUhpRSlGgVS/loFkdAhEXM2NvOyHV9lChoBmgJaA9DCGGMSBRaYFdAlIaUUpRoFU3oA2gWR0CER6FZgXuWdX2UKGgGaAloD0MIFkz8UdQPU0CUhpRSlGgVTegDaBZHQIRajq4YrJ91fZQoaAZoCWgPQwhtyaoIN5n0v5SGlFKUaBVNVAFoFkdAhF8WnbZezHV9lChoBmgJaA9DCJd1/1iINi/AlIaUUpRoFUvjaBZHQIRfvbEgntx1fZQoaAZoCWgPQwjufD813o9hQJSGlFKUaBVN6ANoFkdAhGmDJMg2ZXV9lChoBmgJaA9DCPqbUIiAEV1AlIaUUpRoFU3oA2gWR0CEaYbe/Ho6dX2UKGgGaAloD0MIa/KU1XQjU0CUhpRSlGgVTegDaBZHQIRrM0+C9RJ1fZQoaAZoCWgPQwjn49pQMRRiQJSGlFKUaBVN6ANoFkdAhG58FQl8gXV9lChoBmgJaA9DCFkxXB0AJF9AlIaUUpRoFU3oA2gWR0CEvjYzzmOmdX2UKGgGaAloD0MIiJ0pdF7yXUCUhpRSlGgVTegDaBZHQITArH0btJF1fZQoaAZoCWgPQwj3rkFf+qJgQJSGlFKUaBVN6ANoFkdAhMozUZvUBnV9lChoBmgJaA9DCNQq+kMze0hAlIaUUpRoFU3oA2gWR0CEy2DSPU8WdX2UKGgGaAloD0MIavtXVpqU/r+UhpRSlGgVS6BoFkdAhMvRAjY7JXV9lChoBmgJaA9DCGk50ENtL1BAlIaUUpRoFU3oA2gWR0CE1jQhwEQodX2UKGgGaAloD0MIGH0FacYUYUCUhpRSlGgVTegDaBZHQITZ1E9dNWV1fZQoaAZoCWgPQwgJxsGlY8BpQJSGlFKUaBVN8gFoFkdAhOGgbADaG3V9lChoBmgJaA9DCJIFTODWQ05AlIaUUpRoFU3oA2gWR0CE4/9G7SRbdX2UKGgGaAloD0MI6fAQxk8rIUCUhpRSlGgVS8BoFkdAhOV2Jiy6c3V9lChoBmgJaA9DCOY8Y1+y4VRAlIaUUpRoFU3oA2gWR0CE6CtEG7jDdX2UKGgGaAloD0MIeei7W9kEZECUhpRSlGgVTegDaBZHQITuRDRc/t91fZQoaAZoCWgPQwglzR/T2nwxQJSGlFKUaBVN6ANoFkdAhPo+85CF9XV9lChoBmgJaA9DCCKLNPEOAltAlIaUUpRoFU3oA2gWR0CE+0sg+yJLdX2UKGgGaAloD0MI/Wzkuin7TECUhpRSlGgVTegDaBZHQIT8QCdSVGF1fZQoaAZoCWgPQwjB5EaRta49QJSGlFKUaBVLomgWR0CFA1obGWD6dX2UKGgGaAloD0MIEJNwIY/3WECUhpRSlGgVTegDaBZHQIUDYUtZmqZ1fZQoaAZoCWgPQwh4exAC8thXQJSGlFKUaBVN6ANoFkdAhRasoMKCx3V9lChoBmgJaA9DCFLSw9DqYFBAlIaUUpRoFU3oA2gWR0CFGzhgE2YOdX2UKGgGaAloD0MI98jmqnnUWkCUhpRSlGgVTegDaBZHQIVBbTMJQch1fZQoaAZoCWgPQwhlOQmlL+RfQJSGlFKUaBVN6ANoFkdAhUH9D6WPcXV9lChoBmgJaA9DCIhJuJBH/llAlIaUUpRoFU3oA2gWR0CFQ9UONHYpdX2UKGgGaAloD0MIyNPyA1d4W0CUhpRSlGgVTegDaBZHQIVO/OfNA1N1fZQoaAZoCWgPQwjrxrsjY7ZQQJSGlFKUaBVN6ANoFkdAhVm04JeE7HV9lChoBmgJaA9DCO/hkuNOOFhAlIaUUpRoFU3oA2gWR0CFXvGLk0aZdX2UKGgGaAloD0MIAI3SpX/IXUCUhpRSlGgVTegDaBZHQIVj+cUdq+J1fZQoaAZoCWgPQwinJVZGI+VKQJSGlFKUaBVN6ANoFkdAhWQhD5TIenV9lChoBmgJaA9DCMzs8xjlk1tAlIaUUpRoFU3oA2gWR0CFZgHcDbJwdX2UKGgGaAloD0MIfJxpwvbnUkCUhpRSlGgVTegDaBZHQIV5cdJaq0d1fZQoaAZoCWgPQwjg9C7eD6BhQJSGlFKUaBVN6ANoFkdAhX6bGm1pkHV9lChoBmgJaA9DCENznUZaBl9AlIaUUpRoFU3oA2gWR0CFiYKZ2IO6dX2UKGgGaAloD0MIebDFbp/6YkCUhpRSlGgVTegDaBZHQIWJhmVZ9ux1fZQoaAZoCWgPQwhflnZqLp89QJSGlFKUaBVN6ANoFkdAhYtajN6gNHV9lChoBmgJaA9DCGzoZn+gYVFAlIaUUpRoFU3oA2gWR0CFjr2ki2UjdX2UKGgGaAloD0MIKXtLOV8MHkCUhpRSlGgVS+VoFkdAhZICdz4k/3V9lChoBmgJaA9DCOxP4nOnl2BAlIaUUpRoFU3oA2gWR0CFkqJBPbfxdX2UKGgGaAloD0MIkzgroiYqHkCUhpRSlGgVS9BoFkdAhZQ0jC53DHV9lChoBmgJaA9DCC4EOShhp1hAlIaUUpRoFU3oA2gWR0CFn5q4YrJ9dX2UKGgGaAloD0MIjEtV2uKaXkCUhpRSlGgVTegDaBZHQIWg04Pwuul1fZQoaAZoCWgPQwjy6hwDsilfQJSGlFKUaBVN6ANoFkdAhaFQOWjXWnV9lChoBmgJaA9DCHY0DvW74D1AlIaUUpRoFUucaBZHQIWpEcyWRih1fZQoaAZoCWgPQwgb8s8M4t1cQJSGlFKUaBVN6ANoFkdAhauYgieNDXV9lChoBmgJaA9DCI0N3ewPR1tAlIaUUpRoFU3oA2gWR0CFrzvybx3FdX2UKGgGaAloD0MISPyKNVykF0CUhpRSlGgVS8NoFkdAhbJJaiblR3V9lChoBmgJaA9DCKBTkJ+NE19AlIaUUpRoFU3oA2gWR0CFtxhegL7XdX2UKGgGaAloD0MIKxN+qR98ZkCUhpRSlGgVTegDaBZHQIW6+FDfFaV1fZQoaAZoCWgPQwhCXaRQlg9gQJSGlFKUaBVN6ANoFkdAhb3SP+4smXV9lChoBmgJaA9DCOxMofMacy1AlIaUUpRoFUvraBZHQIXCIKhL5AR1fZQoaAZoCWgPQwjHEAAc+xdhQJSGlFKUaBVN6ANoFkdAhcOiSaEzwnV9lChoBmgJaA9DCH5uaMpOJzRAlIaUUpRoFUvUaBZHQIXI8Wykbgl1fZQoaAZoCWgPQwh9dytLdMVXQJSGlFKUaBVN6ANoFkdAhdAIjnmq53V9lChoBmgJaA9DCIGwU6waGVNAlIaUUpRoFU3oA2gWR0CF0RMX7+DOdX2UKGgGaAloD0MIhLuzdtudYUCUhpRSlGgVTegDaBZHQIXSBcqvvBt1fZQoaAZoCWgPQwgPRYE+kS5TQJSGlFKUaBVN6ANoFkdAhdjUdaMaTHV9lChoBmgJaA9DCLRaYI+JUkxAlIaUUpRoFU3oA2gWR0CF2N/5LytndX2UKGgGaAloD0MI/mSMDzOmZ0CUhpRSlGgVTegDaBZHQIXqdLFn7Hh1fZQoaAZoCWgPQwgfSrTk8axgQJSGlFKUaBVN6ANoFkdAhe66jN6gNHV9lChoBmgJaA9DCPg1kgThAjRAlIaUUpRoFUvlaBZHQIX+ANy5qdp1fZQoaAZoCWgPQwgaUdobfIRcQJSGlFKUaBVN6ANoFkdAhhSnskY4yXV9lChoBmgJaA9DCNydtdsuAllAlIaUUpRoFU3oA2gWR0CGFTuEVWS2dX2UKGgGaAloD0MI14f1Rq0MXECUhpRSlGgVTegDaBZHQIYXKa/h2nt1fZQoaAZoCWgPQwglPKHXn3NcQJSGlFKUaBVN6ANoFkdAhiJfbblA/3V9lChoBmgJaA9DCA6+MJkqC1BAlIaUUpRoFU3oA2gWR0CGLUpLEk0KdX2UKGgGaAloD0MIN4jWijZfOECUhpRSlGgVTegDaBZHQIY3e4Cp3ot1fZQoaAZoCWgPQwiKAn0iT0pWQJSGlFKUaBVN6ANoFkdAhjem+TNdJXV9lChoBmgJaA9DCH5Uw35PDAdAlIaUUpRoFUvfaBZHQIZJpfMOf/Z1fZQoaAZoCWgPQwjGiESh5Y1iQJSGlFKUaBVN6ANoFkdAhk5pBomG/XV9lChoBmgJaA9DCN6Th4VanV1AlIaUUpRoFU3oA2gWR0CGU2Ss8xKydX2UKGgGaAloD0MIGH0FacagXkCUhpRSlGgVTegDaBZHQIZerEit7rt1fZQoaAZoCWgPQwgJGF3eHCBbQJSGlFKUaBVN6ANoFkdAhmR801qFiHV9lChoBmgJaA9DCCPb+X5qFl5AlIaUUpRoFU3oA2gWR0CGaD33YcvNdX2UKGgGaAloD0MIqfsApDb9XUCUhpRSlGgVTegDaBZHQIZo8ofCAMF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 128, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3Vnby8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS91Z28vLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.35 #62-Ubuntu SMP Tue Nov 22 19:54:14 UTC 2022", "Python": "3.10.8", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu102", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b69d9d9d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b69d9da60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b69d9daf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b69d9db80>", "_build": "<function ActorCriticPolicy._build at 0x7f3b69d9dc10>", "forward": "<function ActorCriticPolicy.forward at 0x7f3b69d9dca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b69d9dd30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3b69d9ddc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b69d9de50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b69d9dee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b69d9df70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3b69d9f030>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670532799061173181, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE10Kj7E350+xi4FvvKvYL41ydE7YZA9vQAAAAAAAAAAzSbSPFKwwLkQSAo4gt9PM8tzGLprrSG3AACAPwAAgD8z1l4+lC/KvBAqk7r7cAs5zpgvvqHSwDkAAIA/AACAP5opCz3DGXm6xQ9VuoQtVTb29r06yxx4OQAAgD8AAIA/LZC6PtMcNT/NZCO97mRividpoD3Q27u9AAAAAAAAAACz21o99ggcuurA67qEhwG1w7jxuv5DCToAAIA/AACAP801gj2Fk8m5nuvMOXBKCjbXA5m7+JX0uAAAgD8AAAAAGtkXvoMvE7wxiyM7GyEQOYQJgz2yNVa6AACAPwAAgD+mTrA9SMezurZ0IDnmcRg0Pc/6uH97N7gAAIA/AACAPzNz0jlWH1A9gva0vQnggb7/ejW9pV63PAAAAAAAAAAAmhFzvdfzZrkz5sM7RvFDNf9oezqRyjs0AACAPwAAgD+zhKa9j7Y1uqIosTvMIQg2M2jkOqdEBTUAAAAAAACAP7OCWL3hoIC6c0V5ObPbPjQL6DE5tOOQuAAAgD8AAIA/QGoLPnvroDsuEZK7MnULulMuQj1w2f26AACAPwAAgD/mAQm9yJOsvEUC+L1iGfa9kbUGPqaoBz8AAIA/AACAPwCn+DwpAGK6+qdvuhVHNzazrys6HTqLOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg4b+CS59ZkCUhpRSlIwBbJRN6AOMAXSUR0CWDkcp9ZzQdX2UKGgGaAloD0MIXyhgOxgSY0CUhpRSlGgVTegDaBZHQJYP3Wwu/UR1fZQoaAZoCWgPQwi3Y+qu7CJDQJSGlFKUaBVL+WgWR0CWEDImw7kodX2UKGgGaAloD0MIj1a1pKOxZ0CUhpRSlGgVTegDaBZHQJYT1At4A0d1fZQoaAZoCWgPQwiXAtL+B5VlQJSGlFKUaBVN6ANoFkdAlhjCNbTts3V9lChoBmgJaA9DCPfkYaHWIWRAlIaUUpRoFU3oA2gWR0CWGsiQDFIedX2UKGgGaAloD0MIoMTnTrBgYUCUhpRSlGgVTegDaBZHQJYkt0JWvKV1fZQoaAZoCWgPQwhHOC140aVlQJSGlFKUaBVN6ANoFkdAli1RHf/FSHV9lChoBmgJaA9DCCp0XmOXRl5AlIaUUpRoFU3oA2gWR0CWLVM9r434dX2UKGgGaAloD0MIFTqvscsPZkCUhpRSlGgVTegDaBZHQJYwuw6hg3N1fZQoaAZoCWgPQwgArfnxF5tgQJSGlFKUaBVN6ANoFkdAlkcS/0ulGnV9lChoBmgJaA9DCECiCRQxZ2RAlIaUUpRoFU3oA2gWR0CWSyCeVcD9dX2UKGgGaAloD0MIs+veisSlXUCUhpRSlGgVTegDaBZHQJZM+KZUkv91fZQoaAZoCWgPQwjZlCu8y5UeQJSGlFKUaBVL7mgWR0CWTY0cfeUIdX2UKGgGaAloD0MIzCpsBrhUZUCUhpRSlGgVTegDaBZHQJZOT5P/JeV1fZQoaAZoCWgPQwg6lKEqprhjQJSGlFKUaBVN6ANoFkdAlk9HmV7hN3V9lChoBmgJaA9DCDRmEvUCj2NAlIaUUpRoFU3oA2gWR0CWVNJp35erdX2UKGgGaAloD0MIZJP8iN/ZZUCUhpRSlGgVTegDaBZHQJZXl2hZha11fZQoaAZoCWgPQwgonrMFBFdhQJSGlFKUaBVN6ANoFkdAlllRVZLZjHV9lChoBmgJaA9DCGyWy0bnMGJAlIaUUpRoFU3oA2gWR0CWWbJQtSQ6dX2UKGgGaAloD0MIrJDyk2o/SkCUhpRSlGgVS+1oFkdAllp5cxCY1HV9lChoBmgJaA9DCHzuBPsvBmJAlIaUUpRoFU3oA2gWR0CWXaC6pYLcdX2UKGgGaAloD0MI0PI8uDudY0CUhpRSlGgVTegDaBZHQJZjLcxj8UF1fZQoaAZoCWgPQwjVCWgibI5lQJSGlFKUaBVN6ANoFkdAlmVlMyrPt3V9lChoBmgJaA9DCOYivhOzRGVAlIaUUpRoFU3oA2gWR0CWb3NYr8R+dX2UKGgGaAloD0MIArwFEhQZZ0CUhpRSlGgVTegDaBZHQJZ3z/4qPOp1fZQoaAZoCWgPQwiJKZFEr9tlQJSGlFKUaBVN6ANoFkdAlns9VWCEpXV9lChoBmgJaA9DCA8PYfw0SGJAlIaUUpRoFU3oA2gWR0CWfsIRh+fAdX2UKGgGaAloD0MIwY7/AkG/W0CUhpRSlGgVTegDaBZHQJaaZ3JPqLV1fZQoaAZoCWgPQwj5n/zdOyBkQJSGlFKUaBVN6ANoFkdAlpw7kfcN6XV9lChoBmgJaA9DCLplh/iHQGFAlIaUUpRoFU3oA2gWR0CWnM4tpVS5dX2UKGgGaAloD0MIYTdsW5SIX0CUhpRSlGgVTegDaBZHQJaekXBP9DR1fZQoaAZoCWgPQwgB3Zcz29RaQJSGlFKUaBVN6ANoFkdAlqRVKoQ4CXV9lChoBmgJaA9DCFsnLscrPmNAlIaUUpRoFU3oA2gWR0CWp1acqe9SdX2UKGgGaAloD0MIcD51rNK2YECUhpRSlGgVTegDaBZHQJapK9CeEqV1fZQoaAZoCWgPQwhQATCewYtjQJSGlFKUaBVN6ANoFkdAlqmZbyH2y3V9lChoBmgJaA9DCEEuceSBvV9AlIaUUpRoFU3oA2gWR0CWqme7L+xXdX2UKGgGaAloD0MI+IkD6PdiY0CUhpRSlGgVTegDaBZHQJatpRuTA311fZQoaAZoCWgPQwhvLv62p6RiQJSGlFKUaBVN6ANoFkdAlrOQE6kqMHV9lChoBmgJaA9DCJXTnpLzAWJAlIaUUpRoFU3oA2gWR0CWtdCJ40MxdX2UKGgGaAloD0MI7KS+LO00FECUhpRSlGgVS+poFkdAlrtaGQCCBnV9lChoBmgJaA9DCCttcY3PF2VAlIaUUpRoFU3oA2gWR0CWv7sVLzwudX2UKGgGaAloD0MI1NSytb7ANUCUhpRSlGgVTRIBaBZHQJbDLel9Brx1fZQoaAZoCWgPQwgxtaUO8hVjQJSGlFKUaBVN6ANoFkdAlse4YaYNRXV9lChoBmgJaA9DCO4G0VrRZ2VAlIaUUpRoFU3oA2gWR0CWy0ObRWtEdX2UKGgGaAloD0MIlpaRes9AZECUhpRSlGgVTegDaBZHQJbOpYyO7xx1fZQoaAZoCWgPQwhxOPOrObZeQJSGlFKUaBVN6ANoFkdAluXjpLVWj3V9lChoBmgJaA9DCE9cjlcgJ21AlIaUUpRoFU0tAWgWR0CW53yaNMoMdX2UKGgGaAloD0MIVRSvsrZib0CUhpRSlGgVTbsBaBZHQJbnwaDPGAF1fZQoaAZoCWgPQwikxRnDHO5jQJSGlFKUaBVN6ANoFkdAlufDijtXxXV9lChoBmgJaA9DCOkMjLwsxWRAlIaUUpRoFU3oA2gWR0CW6Eb9qDbrdX2UKGgGaAloD0MIhJ1i1aDJZECUhpRSlGgVTegDaBZHQJbpuxIJ7cB1fZQoaAZoCWgPQwhUOlj/Z2hkQJSGlFKUaBVN6ANoFkdAlu5w2MsH0XV9lChoBmgJaA9DCOVFJuDXgDfAlIaUUpRoFUvOaBZHQJbw3f8/D+B1fZQoaAZoCWgPQwiSQe4iTEhbQJSGlFKUaBVN6ANoFkdAlvEBI4EOiHV9lChoBmgJaA9DCDkKEAUziVxAlIaUUpRoFU3oA2gWR0CW8nODrZ8KdX2UKGgGaAloD0MIK/pDM09EY0CUhpRSlGgVTegDaBZHQJbyzSeAd4p1fZQoaAZoCWgPQwgjaTf6GOxhQJSGlFKUaBVN6ANoFkdAlvN061b7j3V9lChoBmgJaA9DCL8MxohEAWNAlIaUUpRoFU3oA2gWR0CW/fnlnyuqdX2UKGgGaAloD0MIs193uvNLZkCUhpRSlGgVTegDaBZHQJcK26vq1PZ1fZQoaAZoCWgPQwiQZcHEn/dhQJSGlFKUaBVN6ANoFkdAlxk0RaouPHV9lChoBmgJaA9DCH6qCg3EJmJAlIaUUpRoFU3oA2gWR0CXHWEbo8p1dX2UKGgGaAloD0MIa0Wb49w4X0CUhpRSlGgVTegDaBZHQJchjQVsUIt1fZQoaAZoCWgPQwgvpS4Zx1VlQJSGlFKUaBVN6ANoFkdAlz6KZ6Uqx3V9lChoBmgJaA9DCD7ONGH7k2JAlIaUUpRoFU3oA2gWR0CXQHAHE/B4dX2UKGgGaAloD0MIIhlybD3bUkCUhpRSlGgVTegDaBZHQJdAxMK1G9Z1fZQoaAZoCWgPQwjCUIcVbvheQJSGlFKUaBVN6ANoFkdAl0FhbGFSKnV9lChoBmgJaA9DCAiu8gRC1GRAlIaUUpRoFU3oA2gWR0CXQztqpLmIdX2UKGgGaAloD0MIu0ihLHzaXECUhpRSlGgVTegDaBZHQJdJFfWtlqd1fZQoaAZoCWgPQwjBGfz9Yj5gQJSGlFKUaBVN6ANoFkdAl0vzaoMrmXV9lChoBmgJaA9DCEJD/wQXQl1AlIaUUpRoFU3oA2gWR0CXTB/Y8Md+dX2UKGgGaAloD0MIDMwKRbpLXkCUhpRSlGgVTegDaBZHQJdN4tEofCB1fZQoaAZoCWgPQwiLNPEOcDFgQJSGlFKUaBVN6ANoFkdAl05AdKdxyXV9lChoBmgJaA9DCHAJwD+lJWZAlIaUUpRoFU3oA2gWR0CXTvZmqYJFdX2UKGgGaAloD0MI9+XMdoWSXkCUhpRSlGgVTegDaBZHQJdZ0kzGgjB1fZQoaAZoCWgPQwgsDJHTV/xhQJSGlFKUaBVN6ANoFkdAl2V6n752yXV9lChoBmgJaA9DCHR+iuNAdGRAlIaUUpRoFU3oA2gWR0CXbqrksBhhdX2UKGgGaAloD0MIVpv/V53RYUCUhpRSlGgVTegDaBZHQJdyeJVKf4B1fZQoaAZoCWgPQwgrMc9KWu9bQJSGlFKUaBVN6ANoFkdAl3Y7xAjY7XV9lChoBmgJaA9DCC3NrRBWUl1AlIaUUpRoFU3oA2gWR0CXerFJQLuydX2UKGgGaAloD0MIRWRYxZsvYUCUhpRSlGgVTegDaBZHQJePmuloDgZ1fZQoaAZoCWgPQwgoLPGAsmFfQJSGlFKUaBVN6ANoFkdAl4/jER8MNXV9lChoBmgJaA9DCPEpAMYzgmRAlIaUUpRoFU3oA2gWR0CXkHcLSeAedX2UKGgGaAloD0MIZeQs7GnhZECUhpRSlGgVTegDaBZHQJeSRNg0CRx1fZQoaAZoCWgPQwhvK702G6FlQJSGlFKUaBVN6ANoFkdAl5fOlXRw63V9lChoBmgJaA9DCPjhICHKdxbAlIaUUpRoFUvcaBZHQJeZWciGFi91fZQoaAZoCWgPQwgl5llJq85hQJSGlFKUaBVN6ANoFkdAl5pNcOby6XV9lChoBmgJaA9DCFFsBU1Lbl5AlIaUUpRoFU3oA2gWR0CXmm/7BO58dX2UKGgGaAloD0MIIeaSqm2QYUCUhpRSlGgVTegDaBZHQJeb2SMcZLt1fZQoaAZoCWgPQwhzE7U0t6BfQJSGlFKUaBVN6ANoFkdAl5wgXQ+lj3V9lChoBmgJaA9DCMfZdATwY2JAlIaUUpRoFU3oA2gWR0CXnLBMSK3vdX2UKGgGaAloD0MIk8ZoHVXFKkCUhpRSlGgVS+VoFkdAl6NdapxWDHV9lChoBmgJaA9DCKs/wjDg4mBAlIaUUpRoFU3oA2gWR0CXpZ0tyxRmdX2UKGgGaAloD0MIsryrHjDvMECUhpRSlGgVS/loFkdAl6h++AVfu3V9lChoBmgJaA9DCJkoQup2+mJAlIaUUpRoFU3oA2gWR0CXr8MvAXVLdX2UKGgGaAloD0MIMo/8wcDpRUCUhpRSlGgVTQEBaBZHQJe02iqQzUJ1fZQoaAZoCWgPQwhzEHS0qi1EQJSGlFKUaBVL8WgWR0CXtxzUI9kjdX2UKGgGaAloD0MIRdeFHxzuYkCUhpRSlGgVTegDaBZHQJe4Sgam4y51fZQoaAZoCWgPQwjAAwMIn1hkQJSGlFKUaBVN6ANoFkdAl7vJ7gKnenV9lChoBmgJaA9DCAQ5KGEmwWFAlIaUUpRoFU3oA2gWR0CXv1n8baRIdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 260, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
model1000000.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 147334
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:713ffa30578ce5f60dfbaba13603b958ebacb34f27fb03860f1c29f402f36632
|
3 |
size 147334
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 248.8438093600668, "std_reward": 43.13996854384156, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T23:43:45.102109"}
|