| model: |
| base_learning_rate: 1.0e-04 |
| target: ldm.models.diffusion.ddpm.LatentDiffusion |
| params: |
| parameterization: "v" |
| linear_start: 0.00085 |
| linear_end: 0.0120 |
| num_timesteps_cond: 1 |
| log_every_t: 200 |
| timesteps: 1000 |
| first_stage_key: "jpg" |
| cond_stage_key: "txt" |
| image_size: 64 |
| channels: 4 |
| cond_stage_trainable: false |
| conditioning_key: crossattn |
| monitor: val/loss_simple_ema |
| scale_factor: 0.18215 |
| use_ema: False |
|
|
| scheduler_config: |
| target: ldm.lr_scheduler.LambdaLinearScheduler |
| params: |
| warm_up_steps: [ 10000 ] |
| cycle_lengths: [ 10000000000000 ] |
| f_start: [ 1.e-6 ] |
| f_max: [ 1. ] |
| f_min: [ 1. ] |
|
|
| unet_config: |
| target: ldm.modules.diffusionmodules.openaimodel.UNetModel |
| params: |
| image_size: 32 |
| in_channels: 4 |
| out_channels: 4 |
| model_channels: 320 |
| attention_resolutions: [ 4, 2, 1 ] |
| num_res_blocks: 2 |
| channel_mult: [ 1, 2, 4, 4 ] |
| num_heads: 8 |
| use_spatial_transformer: True |
| transformer_depth: 1 |
| context_dim: 768 |
| use_checkpoint: True |
| legacy: False |
|
|
| first_stage_config: |
| target: ldm.models.autoencoder.AutoencoderKL |
| params: |
| embed_dim: 4 |
| monitor: val/rec_loss |
| ddconfig: |
| double_z: true |
| z_channels: 4 |
| resolution: 256 |
| in_channels: 3 |
| out_ch: 3 |
| ch: 128 |
| ch_mult: |
| - 1 |
| - 2 |
| - 4 |
| - 4 |
| num_res_blocks: 2 |
| attn_resolutions: [] |
| dropout: 0.0 |
| lossconfig: |
| target: torch.nn.Identity |
|
|
| cond_stage_config: |
| target: ldm.modules.encoders.modules.FrozenCLIPEmbedder |