Model save
Browse files- README.md +32 -32
- model.safetensors +1 -1
- tokenizer.json +2 -16
- training_args.bin +2 -2
README.md
CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -55,37 +55,37 @@ The following hyperparameters were used during training:
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
-
| No log | 0.04 | 10 | 0.
|
59 |
-
| No log | 0.07 | 20 | 0.
|
60 |
-
| No log | 0.11 | 30 | 0.
|
61 |
-
| No log | 0.15 | 40 | 0.
|
62 |
-
| No log | 0.19 | 50 | 0.
|
63 |
-
| No log | 0.22 | 60 | 0.
|
64 |
-
| No log | 0.26 | 70 | 0.
|
65 |
-
| No log | 0.3 | 80 | 0.
|
66 |
-
| No log | 0.34 | 90 | 0.
|
67 |
-
| No log | 0.37 | 100 | 0.
|
68 |
-
| No log | 0.41 | 110 | 0.
|
69 |
-
| No log | 0.45 | 120 | 0.
|
70 |
-
| No log | 0.49 | 130 | 0.
|
71 |
-
| No log | 0.52 | 140 | 0.
|
72 |
-
| No log | 0.56 | 150 | 0.
|
73 |
-
| No log | 0.6 | 160 | 0.
|
74 |
-
| No log | 0.63 | 170 | 0.
|
75 |
-
| No log | 0.67 | 180 | 0.
|
76 |
-
| No log | 0.71 | 190 | 0.
|
77 |
-
| No log | 0.75 | 200 | 0.
|
78 |
-
| No log | 0.78 | 210 | 0.
|
79 |
-
| No log | 0.82 | 220 | 0.
|
80 |
-
| No log | 0.86 | 230 | 0.
|
81 |
-
| No log | 0.9 | 240 | 0.
|
82 |
-
| No log | 0.93 | 250 | 0.
|
83 |
-
| No log | 0.97 | 260 | 0.
|
84 |
|
85 |
|
86 |
### Framework versions
|
87 |
|
88 |
- Transformers 4.36.2
|
89 |
-
- Pytorch
|
90 |
- Datasets 2.19.0
|
91 |
- Tokenizers 0.15.2
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1869
|
24 |
+
- Precision: 0.9424
|
25 |
+
- Recall: 0.9335
|
26 |
+
- F1: 0.9379
|
27 |
+
- Accuracy: 0.9330
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 0.04 | 10 | 0.6735 | 0.7957 | 0.8581 | 0.8257 | 0.7957 |
|
59 |
+
| No log | 0.07 | 20 | 0.5323 | 0.7957 | 0.8581 | 0.8257 | 0.7957 |
|
60 |
+
| No log | 0.11 | 30 | 0.4444 | 0.8146 | 0.8785 | 0.8453 | 0.8146 |
|
61 |
+
| No log | 0.15 | 40 | 0.3747 | 0.8393 | 0.8973 | 0.8674 | 0.8481 |
|
62 |
+
| No log | 0.19 | 50 | 0.3110 | 0.8734 | 0.8943 | 0.8837 | 0.8777 |
|
63 |
+
| No log | 0.22 | 60 | 0.2818 | 0.8934 | 0.9031 | 0.8982 | 0.8906 |
|
64 |
+
| No log | 0.26 | 70 | 0.2628 | 0.9277 | 0.8946 | 0.9108 | 0.9031 |
|
65 |
+
| No log | 0.3 | 80 | 0.2407 | 0.9190 | 0.9160 | 0.9175 | 0.9133 |
|
66 |
+
| No log | 0.34 | 90 | 0.2861 | 0.9285 | 0.8775 | 0.9023 | 0.8883 |
|
67 |
+
| No log | 0.37 | 100 | 0.2523 | 0.9024 | 0.9150 | 0.9086 | 0.9073 |
|
68 |
+
| No log | 0.41 | 110 | 0.2351 | 0.9195 | 0.9131 | 0.9163 | 0.9122 |
|
69 |
+
| No log | 0.45 | 120 | 0.2435 | 0.9339 | 0.9060 | 0.9197 | 0.9111 |
|
70 |
+
| No log | 0.49 | 130 | 0.2365 | 0.9315 | 0.9097 | 0.9205 | 0.9142 |
|
71 |
+
| No log | 0.52 | 140 | 0.2182 | 0.9345 | 0.9177 | 0.9260 | 0.9202 |
|
72 |
+
| No log | 0.56 | 150 | 0.2138 | 0.9355 | 0.9182 | 0.9268 | 0.9207 |
|
73 |
+
| No log | 0.6 | 160 | 0.2140 | 0.9383 | 0.9187 | 0.9284 | 0.9223 |
|
74 |
+
| No log | 0.63 | 170 | 0.2018 | 0.9397 | 0.9284 | 0.9340 | 0.9285 |
|
75 |
+
| No log | 0.67 | 180 | 0.1998 | 0.9408 | 0.9284 | 0.9346 | 0.9290 |
|
76 |
+
| No log | 0.71 | 190 | 0.1930 | 0.9433 | 0.9292 | 0.9362 | 0.9308 |
|
77 |
+
| No log | 0.75 | 200 | 0.1908 | 0.9420 | 0.9285 | 0.9352 | 0.9300 |
|
78 |
+
| No log | 0.78 | 210 | 0.1923 | 0.9392 | 0.9275 | 0.9333 | 0.9279 |
|
79 |
+
| No log | 0.82 | 220 | 0.1891 | 0.9425 | 0.9297 | 0.9361 | 0.9303 |
|
80 |
+
| No log | 0.86 | 230 | 0.1877 | 0.9449 | 0.9319 | 0.9384 | 0.9326 |
|
81 |
+
| No log | 0.9 | 240 | 0.1873 | 0.9448 | 0.9319 | 0.9383 | 0.9323 |
|
82 |
+
| No log | 0.93 | 250 | 0.1868 | 0.9445 | 0.9328 | 0.9386 | 0.9330 |
|
83 |
+
| No log | 0.97 | 260 | 0.1866 | 0.9429 | 0.9338 | 0.9383 | 0.9333 |
|
84 |
|
85 |
|
86 |
### Framework versions
|
87 |
|
88 |
- Transformers 4.36.2
|
89 |
+
- Pytorch 1.11.0+cu113
|
90 |
- Datasets 2.19.0
|
91 |
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 496256392
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2bbd050c87040240da79bcd01aed2b67276349fa4527f29b8d00ae684e02e08
|
3 |
size 496256392
|
tokenizer.json
CHANGED
@@ -1,21 +1,7 @@
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
-
"truncation":
|
4 |
-
|
5 |
-
"max_length": 512,
|
6 |
-
"strategy": "LongestFirst",
|
7 |
-
"stride": 0
|
8 |
-
},
|
9 |
-
"padding": {
|
10 |
-
"strategy": {
|
11 |
-
"Fixed": 512
|
12 |
-
},
|
13 |
-
"direction": "Right",
|
14 |
-
"pad_to_multiple_of": null,
|
15 |
-
"pad_id": 1,
|
16 |
-
"pad_type_id": 0,
|
17 |
-
"pad_token": "<pad>"
|
18 |
-
},
|
19 |
"added_tokens": [
|
20 |
{
|
21 |
"id": 0,
|
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
+
"truncation": null,
|
4 |
+
"padding": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"added_tokens": [
|
6 |
{
|
7 |
"id": 0,
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec8639150624f0bf082bcc6918d7ad5089daf9bbc6d13cd6a226aa783dbf5060
|
3 |
+
size 4271
|