Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.18 +/- 0.69
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cebebad631be40e3ec9715b65695011b98a0ad7d1825673c7c2c793f82ccc556
|
3 |
+
size 107975
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fae46a7d3a0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fae46a74ae0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1675063512597896275,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAh0LDPgBGFj2bzw0/h0LDPgBGFj2bzw0/h0LDPgBGFj2bzw0/h0LDPgBGFj2bzw0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALIjgviQknL9Ebdo/h7HAP2/Lmz88L9c/LqKgP7/MVT+7BcC/GsDAv7v/07+g9as/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACHQsM+AEYWPZvPDT/vLk0841aDOx5TyDuHQsM+AEYWPZvPDT/vLk0841aDOx5TyDuHQsM+AEYWPZvPDT/vLk0841aDOx5TyDuHQsM+AEYWPZvPDT/vLk0841aDOx5TyDuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.38136694 0.03668785 0.55394906]\n [0.38136694 0.03668785 0.55394906]\n [0.38136694 0.03668785 0.55394906]\n [0.38136694 0.03668785 0.55394906]]",
|
60 |
+
"desired_goal": "[[-0.4385389 -1.2198529 1.7064595]\n [ 1.5054177 1.2171458 1.681129 ]\n [ 1.2549493 0.8351554 -1.5001749]\n [-1.5058625 -1.6562418 1.3434334]]",
|
61 |
+
"observation": "[[0.38136694 0.03668785 0.55394906 0.0125234 0.00400816 0.00611342]\n [0.38136694 0.03668785 0.55394906 0.0125234 0.00400816 0.00611342]\n [0.38136694 0.03668785 0.55394906 0.0125234 0.00400816 0.00611342]\n [0.38136694 0.03668785 0.55394906 0.0125234 0.00400816 0.00611342]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAe8e/PWur7LxuBLs9oCv9vddciz32vSk+/r0UPPcCzr2PShk+/HvUvMjYRT1gKJE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.0936422 -0.02889033 0.09131704]\n [-0.12361836 0.06804817 0.1657637 ]\n [ 0.0090785 -0.10059159 0.14969848]\n [-0.02593803 0.04830244 0.07087779]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz2irksh+9b+UhpRSlIwBbJRLMowBdJRHQKTRM6f8Mux1fZQoaAZoCWgPQwhrm+JxUS3bv5SGlFKUaBVLMmgWR0Ck0PIhY/3WdX2UKGgGaAloD0MI8N5RY0LM9L+UhpRSlGgVSzJoFkdApNCzdvbXYnV9lChoBmgJaA9DCHDtRElI5Pa/lIaUUpRoFUsyaBZHQKTQd7+DOC51fZQoaAZoCWgPQwhy++WTFUPxv5SGlFKUaBVLMmgWR0Ck0lS7GvOhdX2UKGgGaAloD0MIMSjTaHIx8L+UhpRSlGgVSzJoFkdApNITMLWqcXV9lChoBmgJaA9DCCkkmdU7XOG/lIaUUpRoFUsyaBZHQKTR1IikftB1fZQoaAZoCWgPQwhFn48y4gLyv5SGlFKUaBVLMmgWR0Ck0Zj0Dlo2dX2UKGgGaAloD0MIaVIKur1k9r+UhpRSlGgVSzJoFkdApNNnQnhKlHV9lChoBmgJaA9DCA9j0t9L4eC/lIaUUpRoFUsyaBZHQKTTJamoBJZ1fZQoaAZoCWgPQwjLDvEPW3rvv5SGlFKUaBVLMmgWR0Ck0ubz9S/CdX2UKGgGaAloD0MIQEtXsI248L+UhpRSlGgVSzJoFkdApNKrSVnmJXV9lChoBmgJaA9DCGVx/5Hp0Oi/lIaUUpRoFUsyaBZHQKTUgmWt2cJ1fZQoaAZoCWgPQwiyuP/IdOjkv5SGlFKUaBVLMmgWR0Ck1EDn/1g6dX2UKGgGaAloD0MIGM41zNB487+UhpRSlGgVSzJoFkdApNQCScLBsXV9lChoBmgJaA9DCFc9YB4yZem/lIaUUpRoFUsyaBZHQKTTxp/wy7B1fZQoaAZoCWgPQwiW6ZeIt87jv5SGlFKUaBVLMmgWR0Ck1Zv7N0NjdX2UKGgGaAloD0MIb9bgfVWu6b+UhpRSlGgVSzJoFkdApNVafL9uP3V9lChoBmgJaA9DCMoXtJCAUeW/lIaUUpRoFUsyaBZHQKTVG8jAzpJ1fZQoaAZoCWgPQwix+iMMA1b+v5SGlFKUaBVLMmgWR0Ck1OBGhEjPdX2UKGgGaAloD0MIEhPU8C0s7L+UhpRSlGgVSzJoFkdApNbGF8G9pXV9lChoBmgJaA9DCBjpRe1+1fG/lIaUUpRoFUsyaBZHQKTWhIp6QeV1fZQoaAZoCWgPQwhsJXSXxNnnv5SGlFKUaBVLMmgWR0Ck1kXWFvhqdX2UKGgGaAloD0MIe2gfK/gt8L+UhpRSlGgVSzJoFkdApNYK1uzhP3V9lChoBmgJaA9DCFxXzAhvzwHAlIaUUpRoFUsyaBZHQKTX0FwDNhV1fZQoaAZoCWgPQwjbw14oYHv6v5SGlFKUaBVLMmgWR0Ck1469kBjndX2UKGgGaAloD0MIigRTzayl47+UhpRSlGgVSzJoFkdApNdQDzRQanV9lChoBmgJaA9DCBCzl22nrfq/lIaUUpRoFUsyaBZHQKTXFEvTPSl1fZQoaAZoCWgPQwj1SIPb2gLwv5SGlFKUaBVLMmgWR0Ck2QbvG6wudX2UKGgGaAloD0MIqDgOvFru67+UhpRSlGgVSzJoFkdApNjFYuCf6HV9lChoBmgJaA9DCLAgzVg0nem/lIaUUpRoFUsyaBZHQKTYhrWRRuV1fZQoaAZoCWgPQwiHGoUks7r5v5SGlFKUaBVLMmgWR0Ck2EsA/9pAdX2UKGgGaAloD0MIKlWi7C1l97+UhpRSlGgVSzJoFkdApNov2M85j3V9lChoBmgJaA9DCPT8aaM6HfW/lIaUUpRoFUsyaBZHQKTZ7mmLtNV1fZQoaAZoCWgPQwjF5uPaULHjv5SGlFKUaBVLMmgWR0Ck2a/bTMJQdX2UKGgGaAloD0MItoR80LNZ5b+UhpRSlGgVSzJoFkdApNl0LhJiAnV9lChoBmgJaA9DCCTusfShC/q/lIaUUpRoFUsyaBZHQKTbQchC+lF1fZQoaAZoCWgPQwh2492Rsdr0v5SGlFKUaBVLMmgWR0Ck2wBX8wYcdX2UKGgGaAloD0MI8yGoGr2a8b+UhpRSlGgVSzJoFkdApNrBmAbyY3V9lChoBmgJaA9DCKOTpdb7TQLAlIaUUpRoFUsyaBZHQKTahfuTibV1fZQoaAZoCWgPQwhbsirCTcbgv5SGlFKUaBVLMmgWR0Ck3F8OTaCddX2UKGgGaAloD0MIWB050hmY4b+UhpRSlGgVSzJoFkdApNwdi8WbgHV9lChoBmgJaA9DCLQ8D+7O2uu/lIaUUpRoFUsyaBZHQKTb3u1F6Rh1fZQoaAZoCWgPQwhhMlUwKinpv5SGlFKUaBVLMmgWR0Ck26NGd7OWdX2UKGgGaAloD0MIkdEBSdi357+UhpRSlGgVSzJoFkdApN17nq3VkXV9lChoBmgJaA9DCBefAmA8w/G/lIaUUpRoFUsyaBZHQKTdOfq5byJ1fZQoaAZoCWgPQwj6YBkbutnpv5SGlFKUaBVLMmgWR0Ck3PtKAavSdX2UKGgGaAloD0MI8WPMXUtI8r+UhpRSlGgVSzJoFkdApNy/kvK2a3V9lChoBmgJaA9DCCy69ZoeFN+/lIaUUpRoFUsyaBZHQKTenbxmTTx1fZQoaAZoCWgPQwgHKXgKuVL3v5SGlFKUaBVLMmgWR0Ck3lxbjcVQdX2UKGgGaAloD0MIIT1FDhG35L+UhpRSlGgVSzJoFkdApN4dvn8sMHV9lChoBmgJaA9DCEolPKHXH+K/lIaUUpRoFUsyaBZHQKTd4kcCHRF1fZQoaAZoCWgPQwiCqPsApLbiv5SGlFKUaBVLMmgWR0Ck37sHB1s+dX2UKGgGaAloD0MIkgciizRx6r+UhpRSlGgVSzJoFkdApN95iI+GGnV9lChoBmgJaA9DCHtLOV/sffe/lIaUUpRoFUsyaBZHQKTfOsgdOqN1fZQoaAZoCWgPQwjZYOEkzZ/1v5SGlFKUaBVLMmgWR0Ck3v8RUWEcdX2UKGgGaAloD0MIck7soX0s9r+UhpRSlGgVSzJoFkdApODUMRYigXV9lChoBmgJaA9DCFD8GHPXkuS/lIaUUpRoFUsyaBZHQKTgkrTYukF1fZQoaAZoCWgPQwiL4lXWNsXxv5SGlFKUaBVLMmgWR0Ck4FPv8ZUDdX2UKGgGaAloD0MIkgThCihU67+UhpRSlGgVSzJoFkdApOAYV45cT3V9lChoBmgJaA9DCJMa2gBswOi/lIaUUpRoFUsyaBZHQKTh9MOf/WF1fZQoaAZoCWgPQwgxfa8hOK7pv5SGlFKUaBVLMmgWR0Ck4bNJFspHdX2UKGgGaAloD0MIsrtASYGF5L+UhpRSlGgVSzJoFkdApOF0rCm/FnV9lChoBmgJaA9DCIKPwYpT7fO/lIaUUpRoFUsyaBZHQKThOQAdXDF1fZQoaAZoCWgPQwgtXcE24knlv5SGlFKUaBVLMmgWR0Ck4xCdjG1hdX2UKGgGaAloD0MIVPzfERVq9b+UhpRSlGgVSzJoFkdApOLPBzmwJXV9lChoBmgJaA9DCHL6er5mud+/lIaUUpRoFUsyaBZHQKTikHVwxWV1fZQoaAZoCWgPQwgxYMlVLP7iv5SGlFKUaBVLMmgWR0Ck4lTZxrBTdX2UKGgGaAloD0MIGoums5PB7L+UhpRSlGgVSzJoFkdApOQySzPa+XV9lChoBmgJaA9DCGUXDK65I/S/lIaUUpRoFUsyaBZHQKTj8NayKN11fZQoaAZoCWgPQwja44V0eEgAwJSGlFKUaBVLMmgWR0Ck47IO6NEPdX2UKGgGaAloD0MIyAbSxaaV57+UhpRSlGgVSzJoFkdApON2WpqASXV9lChoBmgJaA9DCIza/SrA9+G/lIaUUpRoFUsyaBZHQKTlT5HmRvF1fZQoaAZoCWgPQwiJRKFl3f8DwJSGlFKUaBVLMmgWR0Ck5Q4dQwbmdX2UKGgGaAloD0MIXwoPml336L+UhpRSlGgVSzJoFkdApOTPeUILPXV9lChoBmgJaA9DCGq+Sj52l/G/lIaUUpRoFUsyaBZHQKTkk9pyp711fZQoaAZoCWgPQwhVaCCWzZz4v5SGlFKUaBVLMmgWR0Ck5mxPO6d2dX2UKGgGaAloD0MIJET5ghYS+r+UhpRSlGgVSzJoFkdApOYq7/XGwXV9lChoBmgJaA9DCOTXD7HBQvC/lIaUUpRoFUsyaBZHQKTl7Pwd8zB1fZQoaAZoCWgPQwhLAtTUsrX3v5SGlFKUaBVLMmgWR0Ck5bFmnO0LdX2UKGgGaAloD0MIdNAlHHqL97+UhpRSlGgVSzJoFkdApOeAVqN6xHV9lChoBmgJaA9DCLa5MT1hifi/lIaUUpRoFUsyaBZHQKTnPu/Dcdp1fZQoaAZoCWgPQwizCTAsfz77v5SGlFKUaBVLMmgWR0Ck5wApKBd2dX2UKGgGaAloD0MIqDRiZp+H+L+UhpRSlGgVSzJoFkdApObE+A3DN3V9lChoBmgJaA9DCNhit88qUwTAlIaUUpRoFUsyaBZHQKToobkwN9Z1fZQoaAZoCWgPQwgqGQCquNEHwJSGlFKUaBVLMmgWR0Ck6GA7gbZOdX2UKGgGaAloD0MI0Xe3skTn6r+UhpRSlGgVSzJoFkdApOghqynk1nV9lChoBmgJaA9DCA8KStHK/f6/lIaUUpRoFUsyaBZHQKTn5fwZwXJ1fZQoaAZoCWgPQwgyA5Xx77P1v5SGlFKUaBVLMmgWR0Ck6cCliz9kdX2UKGgGaAloD0MI7KS+LO1U9r+UhpRSlGgVSzJoFkdApOl/IQvpQnV9lChoBmgJaA9DCOc1donqrfO/lIaUUpRoFUsyaBZHQKTpQIO6NER1fZQoaAZoCWgPQwio/Gt55frvv5SGlFKUaBVLMmgWR0Ck6QTPjXFtdX2UKGgGaAloD0MI8u7IWG0eAsCUhpRSlGgVSzJoFkdApOrZkqc3EXV9lChoBmgJaA9DCAPrOH6odPy/lIaUUpRoFUsyaBZHQKTqmC3gDRt1fZQoaAZoCWgPQwjikuNO6eD2v5SGlFKUaBVLMmgWR0Ck6lmKIi1RdX2UKGgGaAloD0MI5Gn5gat8/L+UhpRSlGgVSzJoFkdApOoeoJiRXHV9lChoBmgJaA9DCMLB3sSQXP6/lIaUUpRoFUsyaBZHQKTr9wz+FUR1fZQoaAZoCWgPQwjysFBrmjf0v5SGlFKUaBVLMmgWR0Ck67WSMcZMdX2UKGgGaAloD0MIXDtREhLp7L+UhpRSlGgVSzJoFkdApOt29+PRzHV9lChoBmgJaA9DCDf92Y8Uke+/lIaUUpRoFUsyaBZHQKTrO2CuloF1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aab1a1f91bceca7ce2308d9657d86578a4607939941bf9ec175e2c39ad1b8e3f
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:116dae1b3f922d918f40713c8f4ab16fb1bb1ede9ed885abd5da8a9354d6b68f
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fae46a7d3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fae46a74ae0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675063512597896275, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAh0LDPgBGFj2bzw0/h0LDPgBGFj2bzw0/h0LDPgBGFj2bzw0/h0LDPgBGFj2bzw0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALIjgviQknL9Ebdo/h7HAP2/Lmz88L9c/LqKgP7/MVT+7BcC/GsDAv7v/07+g9as/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACHQsM+AEYWPZvPDT/vLk0841aDOx5TyDuHQsM+AEYWPZvPDT/vLk0841aDOx5TyDuHQsM+AEYWPZvPDT/vLk0841aDOx5TyDuHQsM+AEYWPZvPDT/vLk0841aDOx5TyDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.38136694 0.03668785 0.55394906]\n [0.38136694 0.03668785 0.55394906]\n [0.38136694 0.03668785 0.55394906]\n [0.38136694 0.03668785 0.55394906]]", "desired_goal": "[[-0.4385389 -1.2198529 1.7064595]\n [ 1.5054177 1.2171458 1.681129 ]\n [ 1.2549493 0.8351554 -1.5001749]\n [-1.5058625 -1.6562418 1.3434334]]", "observation": "[[0.38136694 0.03668785 0.55394906 0.0125234 0.00400816 0.00611342]\n [0.38136694 0.03668785 0.55394906 0.0125234 0.00400816 0.00611342]\n [0.38136694 0.03668785 0.55394906 0.0125234 0.00400816 0.00611342]\n [0.38136694 0.03668785 0.55394906 0.0125234 0.00400816 0.00611342]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAe8e/PWur7LxuBLs9oCv9vddciz32vSk+/r0UPPcCzr2PShk+/HvUvMjYRT1gKJE9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0936422 -0.02889033 0.09131704]\n [-0.12361836 0.06804817 0.1657637 ]\n [ 0.0090785 -0.10059159 0.14969848]\n [-0.02593803 0.04830244 0.07087779]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIz2irksh+9b+UhpRSlIwBbJRLMowBdJRHQKTRM6f8Mux1fZQoaAZoCWgPQwhrm+JxUS3bv5SGlFKUaBVLMmgWR0Ck0PIhY/3WdX2UKGgGaAloD0MI8N5RY0LM9L+UhpRSlGgVSzJoFkdApNCzdvbXYnV9lChoBmgJaA9DCHDtRElI5Pa/lIaUUpRoFUsyaBZHQKTQd7+DOC51fZQoaAZoCWgPQwhy++WTFUPxv5SGlFKUaBVLMmgWR0Ck0lS7GvOhdX2UKGgGaAloD0MIMSjTaHIx8L+UhpRSlGgVSzJoFkdApNITMLWqcXV9lChoBmgJaA9DCCkkmdU7XOG/lIaUUpRoFUsyaBZHQKTR1IikftB1fZQoaAZoCWgPQwhFn48y4gLyv5SGlFKUaBVLMmgWR0Ck0Zj0Dlo2dX2UKGgGaAloD0MIaVIKur1k9r+UhpRSlGgVSzJoFkdApNNnQnhKlHV9lChoBmgJaA9DCA9j0t9L4eC/lIaUUpRoFUsyaBZHQKTTJamoBJZ1fZQoaAZoCWgPQwjLDvEPW3rvv5SGlFKUaBVLMmgWR0Ck0ubz9S/CdX2UKGgGaAloD0MIQEtXsI248L+UhpRSlGgVSzJoFkdApNKrSVnmJXV9lChoBmgJaA9DCGVx/5Hp0Oi/lIaUUpRoFUsyaBZHQKTUgmWt2cJ1fZQoaAZoCWgPQwiyuP/IdOjkv5SGlFKUaBVLMmgWR0Ck1EDn/1g6dX2UKGgGaAloD0MIGM41zNB487+UhpRSlGgVSzJoFkdApNQCScLBsXV9lChoBmgJaA9DCFc9YB4yZem/lIaUUpRoFUsyaBZHQKTTxp/wy7B1fZQoaAZoCWgPQwiW6ZeIt87jv5SGlFKUaBVLMmgWR0Ck1Zv7N0NjdX2UKGgGaAloD0MIb9bgfVWu6b+UhpRSlGgVSzJoFkdApNVafL9uP3V9lChoBmgJaA9DCMoXtJCAUeW/lIaUUpRoFUsyaBZHQKTVG8jAzpJ1fZQoaAZoCWgPQwix+iMMA1b+v5SGlFKUaBVLMmgWR0Ck1OBGhEjPdX2UKGgGaAloD0MIEhPU8C0s7L+UhpRSlGgVSzJoFkdApNbGF8G9pXV9lChoBmgJaA9DCBjpRe1+1fG/lIaUUpRoFUsyaBZHQKTWhIp6QeV1fZQoaAZoCWgPQwhsJXSXxNnnv5SGlFKUaBVLMmgWR0Ck1kXWFvhqdX2UKGgGaAloD0MIe2gfK/gt8L+UhpRSlGgVSzJoFkdApNYK1uzhP3V9lChoBmgJaA9DCFxXzAhvzwHAlIaUUpRoFUsyaBZHQKTX0FwDNhV1fZQoaAZoCWgPQwjbw14oYHv6v5SGlFKUaBVLMmgWR0Ck1469kBjndX2UKGgGaAloD0MIigRTzayl47+UhpRSlGgVSzJoFkdApNdQDzRQanV9lChoBmgJaA9DCBCzl22nrfq/lIaUUpRoFUsyaBZHQKTXFEvTPSl1fZQoaAZoCWgPQwj1SIPb2gLwv5SGlFKUaBVLMmgWR0Ck2QbvG6wudX2UKGgGaAloD0MIqDgOvFru67+UhpRSlGgVSzJoFkdApNjFYuCf6HV9lChoBmgJaA9DCLAgzVg0nem/lIaUUpRoFUsyaBZHQKTYhrWRRuV1fZQoaAZoCWgPQwiHGoUks7r5v5SGlFKUaBVLMmgWR0Ck2EsA/9pAdX2UKGgGaAloD0MIKlWi7C1l97+UhpRSlGgVSzJoFkdApNov2M85j3V9lChoBmgJaA9DCPT8aaM6HfW/lIaUUpRoFUsyaBZHQKTZ7mmLtNV1fZQoaAZoCWgPQwjF5uPaULHjv5SGlFKUaBVLMmgWR0Ck2a/bTMJQdX2UKGgGaAloD0MItoR80LNZ5b+UhpRSlGgVSzJoFkdApNl0LhJiAnV9lChoBmgJaA9DCCTusfShC/q/lIaUUpRoFUsyaBZHQKTbQchC+lF1fZQoaAZoCWgPQwh2492Rsdr0v5SGlFKUaBVLMmgWR0Ck2wBX8wYcdX2UKGgGaAloD0MI8yGoGr2a8b+UhpRSlGgVSzJoFkdApNrBmAbyY3V9lChoBmgJaA9DCKOTpdb7TQLAlIaUUpRoFUsyaBZHQKTahfuTibV1fZQoaAZoCWgPQwhbsirCTcbgv5SGlFKUaBVLMmgWR0Ck3F8OTaCddX2UKGgGaAloD0MIWB050hmY4b+UhpRSlGgVSzJoFkdApNwdi8WbgHV9lChoBmgJaA9DCLQ8D+7O2uu/lIaUUpRoFUsyaBZHQKTb3u1F6Rh1fZQoaAZoCWgPQwhhMlUwKinpv5SGlFKUaBVLMmgWR0Ck26NGd7OWdX2UKGgGaAloD0MIkdEBSdi357+UhpRSlGgVSzJoFkdApN17nq3VkXV9lChoBmgJaA9DCBefAmA8w/G/lIaUUpRoFUsyaBZHQKTdOfq5byJ1fZQoaAZoCWgPQwj6YBkbutnpv5SGlFKUaBVLMmgWR0Ck3PtKAavSdX2UKGgGaAloD0MI8WPMXUtI8r+UhpRSlGgVSzJoFkdApNy/kvK2a3V9lChoBmgJaA9DCCy69ZoeFN+/lIaUUpRoFUsyaBZHQKTenbxmTTx1fZQoaAZoCWgPQwgHKXgKuVL3v5SGlFKUaBVLMmgWR0Ck3lxbjcVQdX2UKGgGaAloD0MIIT1FDhG35L+UhpRSlGgVSzJoFkdApN4dvn8sMHV9lChoBmgJaA9DCEolPKHXH+K/lIaUUpRoFUsyaBZHQKTd4kcCHRF1fZQoaAZoCWgPQwiCqPsApLbiv5SGlFKUaBVLMmgWR0Ck37sHB1s+dX2UKGgGaAloD0MIkgciizRx6r+UhpRSlGgVSzJoFkdApN95iI+GGnV9lChoBmgJaA9DCHtLOV/sffe/lIaUUpRoFUsyaBZHQKTfOsgdOqN1fZQoaAZoCWgPQwjZYOEkzZ/1v5SGlFKUaBVLMmgWR0Ck3v8RUWEcdX2UKGgGaAloD0MIck7soX0s9r+UhpRSlGgVSzJoFkdApODUMRYigXV9lChoBmgJaA9DCFD8GHPXkuS/lIaUUpRoFUsyaBZHQKTgkrTYukF1fZQoaAZoCWgPQwiL4lXWNsXxv5SGlFKUaBVLMmgWR0Ck4FPv8ZUDdX2UKGgGaAloD0MIkgThCihU67+UhpRSlGgVSzJoFkdApOAYV45cT3V9lChoBmgJaA9DCJMa2gBswOi/lIaUUpRoFUsyaBZHQKTh9MOf/WF1fZQoaAZoCWgPQwgxfa8hOK7pv5SGlFKUaBVLMmgWR0Ck4bNJFspHdX2UKGgGaAloD0MIsrtASYGF5L+UhpRSlGgVSzJoFkdApOF0rCm/FnV9lChoBmgJaA9DCIKPwYpT7fO/lIaUUpRoFUsyaBZHQKThOQAdXDF1fZQoaAZoCWgPQwgtXcE24knlv5SGlFKUaBVLMmgWR0Ck4xCdjG1hdX2UKGgGaAloD0MIVPzfERVq9b+UhpRSlGgVSzJoFkdApOLPBzmwJXV9lChoBmgJaA9DCHL6er5mud+/lIaUUpRoFUsyaBZHQKTikHVwxWV1fZQoaAZoCWgPQwgxYMlVLP7iv5SGlFKUaBVLMmgWR0Ck4lTZxrBTdX2UKGgGaAloD0MIGoums5PB7L+UhpRSlGgVSzJoFkdApOQySzPa+XV9lChoBmgJaA9DCGUXDK65I/S/lIaUUpRoFUsyaBZHQKTj8NayKN11fZQoaAZoCWgPQwja44V0eEgAwJSGlFKUaBVLMmgWR0Ck47IO6NEPdX2UKGgGaAloD0MIyAbSxaaV57+UhpRSlGgVSzJoFkdApON2WpqASXV9lChoBmgJaA9DCIza/SrA9+G/lIaUUpRoFUsyaBZHQKTlT5HmRvF1fZQoaAZoCWgPQwiJRKFl3f8DwJSGlFKUaBVLMmgWR0Ck5Q4dQwbmdX2UKGgGaAloD0MIXwoPml336L+UhpRSlGgVSzJoFkdApOTPeUILPXV9lChoBmgJaA9DCGq+Sj52l/G/lIaUUpRoFUsyaBZHQKTkk9pyp711fZQoaAZoCWgPQwhVaCCWzZz4v5SGlFKUaBVLMmgWR0Ck5mxPO6d2dX2UKGgGaAloD0MIJET5ghYS+r+UhpRSlGgVSzJoFkdApOYq7/XGwXV9lChoBmgJaA9DCOTXD7HBQvC/lIaUUpRoFUsyaBZHQKTl7Pwd8zB1fZQoaAZoCWgPQwhLAtTUsrX3v5SGlFKUaBVLMmgWR0Ck5bFmnO0LdX2UKGgGaAloD0MIdNAlHHqL97+UhpRSlGgVSzJoFkdApOeAVqN6xHV9lChoBmgJaA9DCLa5MT1hifi/lIaUUpRoFUsyaBZHQKTnPu/Dcdp1fZQoaAZoCWgPQwizCTAsfz77v5SGlFKUaBVLMmgWR0Ck5wApKBd2dX2UKGgGaAloD0MIqDRiZp+H+L+UhpRSlGgVSzJoFkdApObE+A3DN3V9lChoBmgJaA9DCNhit88qUwTAlIaUUpRoFUsyaBZHQKToobkwN9Z1fZQoaAZoCWgPQwgqGQCquNEHwJSGlFKUaBVLMmgWR0Ck6GA7gbZOdX2UKGgGaAloD0MI0Xe3skTn6r+UhpRSlGgVSzJoFkdApOghqynk1nV9lChoBmgJaA9DCA8KStHK/f6/lIaUUpRoFUsyaBZHQKTn5fwZwXJ1fZQoaAZoCWgPQwgyA5Xx77P1v5SGlFKUaBVLMmgWR0Ck6cCliz9kdX2UKGgGaAloD0MI7KS+LO1U9r+UhpRSlGgVSzJoFkdApOl/IQvpQnV9lChoBmgJaA9DCOc1donqrfO/lIaUUpRoFUsyaBZHQKTpQIO6NER1fZQoaAZoCWgPQwio/Gt55frvv5SGlFKUaBVLMmgWR0Ck6QTPjXFtdX2UKGgGaAloD0MI8u7IWG0eAsCUhpRSlGgVSzJoFkdApOrZkqc3EXV9lChoBmgJaA9DCAPrOH6odPy/lIaUUpRoFUsyaBZHQKTqmC3gDRt1fZQoaAZoCWgPQwjikuNO6eD2v5SGlFKUaBVLMmgWR0Ck6lmKIi1RdX2UKGgGaAloD0MI5Gn5gat8/L+UhpRSlGgVSzJoFkdApOoeoJiRXHV9lChoBmgJaA9DCMLB3sSQXP6/lIaUUpRoFUsyaBZHQKTr9wz+FUR1fZQoaAZoCWgPQwjysFBrmjf0v5SGlFKUaBVLMmgWR0Ck67WSMcZMdX2UKGgGaAloD0MIXDtREhLp7L+UhpRSlGgVSzJoFkdApOt29+PRzHV9lChoBmgJaA9DCDf92Y8Uke+/lIaUUpRoFUsyaBZHQKTrO2CuloF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (327 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.1810147546930239, "std_reward": 0.6929394320999823, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-30T08:09:53.988205"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40e77a4d0a8f03918eb07f154a9868f73806b2ce3a9838dedf843e5dc21e80d9
|
3 |
+
size 3056
|