lniki's picture
add model
0e83290 verified
import torch
from XMem2.inference.memory_manager import MemoryManager
from XMem2.model.network import XMem
from XMem2.model.aggregate import aggregate
from XMem2.util.tensor_util import pad_divide_by, unpad
class InferenceCore:
def __init__(self, network: XMem, config):
self.config = config
self.network = network
self.mem_every = config['mem_every']
self.deep_update_every = config['deep_update_every']
self.enable_long_term = config['enable_long_term']
# if deep_update_every < 0, synchronize deep update with memory frame
self.deep_update_sync = self.deep_update_every < 0
self.clear_memory()
self.all_labels = None
# warmup
self.network.encode_key(torch.zeros((1, 3, 480, 854), device=config['device']))
def clear_memory(self, keep_permanent=False):
self.curr_ti = -1
self.last_mem_ti = 0
if not self.deep_update_sync:
self.last_deep_update_ti = -self.deep_update_every
if keep_permanent:
new_memory = self.memory.copy_perm_mem_only()
else:
new_memory = MemoryManager(config=self.config)
self.memory = new_memory
def update_config(self, config):
self.mem_every = config['mem_every']
self.deep_update_every = config['deep_update_every']
self.enable_long_term = config['enable_long_term']
# if deep_update_every < 0, synchronize deep update with memory frame
self.deep_update_sync = self.deep_update_every < 0
self.memory.update_config(config)
def set_all_labels(self, all_labels):
# self.all_labels = [l.item() for l in all_labels]
self.all_labels = all_labels
def encode_frame_key(self, image):
image, self.pad = pad_divide_by(image, 16)
image = image.unsqueeze(0) # add the batch dimension
key, shrinkage, selection, f16, f8, f4 = self.network.encode_key(
image, need_ek=True, need_sk=True
)
return key, shrinkage, selection
def step(
self,
image,
mask=None,
valid_labels=None,
end=False,
manually_curated_masks=False,
disable_memory_updates=False,
do_not_add_mask_to_memory=False,
return_key_and_stuff=False,
):
# For feedback:
# 1. We run the model as usual
# 2. We get feedback: 2 lists, one with good prediction indices, one with bad
# 3. We force the good frames (+ annotated frames) to stay in working memory forever
# 4. We force the bad frames to never even get added to the working memory
# 5. Rerun with these settings
# image: 3*H*W
# mask: num_objects*H*W or None
self.curr_ti += 1
image, self.pad = pad_divide_by(image, 16)
image = image.unsqueeze(0) # add the batch dimension
if manually_curated_masks:
is_mem_frame = (mask is not None) and (not end)
else:
is_mem_frame = (
(self.curr_ti - self.last_mem_ti >= self.mem_every)
or (mask is not None)
) and (not end)
is_ignore = do_not_add_mask_to_memory # to avoid adding permanent memory frames twice, since they are alredy in the memory
need_segment = (valid_labels is None) or (
len(self.all_labels) != len(valid_labels)
)
is_deep_update = (
(self.deep_update_sync and is_mem_frame) # synchronized
or (
not self.deep_update_sync
and self.curr_ti - self.last_deep_update_ti >= self.deep_update_every
) # no-sync
) and (not end)
is_normal_update = (not self.deep_update_sync or not is_deep_update) and (
not end
)
key, shrinkage, selection, f16, f8, f4 = self.network.encode_key(
image, need_ek=(self.enable_long_term or need_segment), need_sk=True
)
multi_scale_features = (f16, f8, f4)
if disable_memory_updates:
is_normal_update = False
is_deep_update = False
is_mem_frame = False
self.curr_ti -= 1 # do not advance the iteration further
# segment the current frame is needed
if need_segment:
memory_readout = self.memory.match_memory(
key, selection, disable_usage_updates=disable_memory_updates
).unsqueeze(0)
hidden, _, pred_prob_with_bg = self.network.segment(
multi_scale_features,
memory_readout,
self.memory.get_hidden(),
h_out=is_normal_update,
strip_bg=False,
)
# remove batch dim
pred_prob_with_bg = pred_prob_with_bg[0]
pred_prob_no_bg = pred_prob_with_bg[1:]
if is_normal_update:
self.memory.set_hidden(hidden)
else:
pred_prob_no_bg = pred_prob_with_bg = None
# use the input mask if any
if mask is not None:
mask, _ = pad_divide_by(mask, 16)
if pred_prob_no_bg is not None:
# if we have a predicted mask, we work on it
# make pred_prob_no_bg consistent with the input mask
mask_regions = mask.sum(0) > 0.5
pred_prob_no_bg[:, mask_regions] = 0
# shift by 1 because mask/pred_prob_no_bg do not contain background
mask = mask.type_as(pred_prob_no_bg)
if valid_labels is not None:
shift_by_one_non_labels = [
i
for i in range(pred_prob_no_bg.shape[0])
if (i + 1) not in valid_labels
]
# non-labelled objects are copied from the predicted mask
mask[shift_by_one_non_labels] = pred_prob_no_bg[
shift_by_one_non_labels
]
pred_prob_with_bg = aggregate(mask, dim=0)
# also create new hidden states
if not disable_memory_updates:
self.memory.create_hidden_state(len(self.all_labels), key)
# save as memory if needed
if is_mem_frame:
value, hidden = self.network.encode_value(
image,
f16,
self.memory.get_hidden(),
pred_prob_with_bg[1:].unsqueeze(0),
is_deep_update=is_deep_update,
)
self.memory.add_memory(
key,
shrinkage,
value,
self.all_labels,
selection=selection if self.enable_long_term else None,
ignore=is_ignore,
)
self.last_mem_ti = self.curr_ti
if is_deep_update:
self.memory.set_hidden(hidden)
self.last_deep_update_ti = self.curr_ti
res = unpad(pred_prob_with_bg, self.pad)
if return_key_and_stuff:
return res, key, shrinkage, selection
else:
return res
def put_to_permanent_memory(self, image, mask, ti=None):
image, self.pad = pad_divide_by(image, 16)
image = image.unsqueeze(0) # add the batch dimension
key, shrinkage, selection, f16, f8, f4 = self.network.encode_key(
image, need_ek=True, need_sk=True
)
mask, _ = pad_divide_by(mask, 16)
pred_prob_with_bg = aggregate(mask, dim=0)
self.memory.create_hidden_state(len(self.all_labels), key)
value, hidden = self.network.encode_value(
image,
f16,
self.memory.get_hidden(),
pred_prob_with_bg[1:].unsqueeze(0),
is_deep_update=False,
)
is_update = self.memory.frame_already_saved(ti)
# print(ti, f"update={is_update}")
if self.memory.frame_already_saved(ti):
self.memory.update_permanent_memory(
ti,
key,
shrinkage,
value,
selection=selection if self.enable_long_term else None,
)
else:
self.memory.add_memory(
key,
shrinkage,
value,
self.all_labels,
selection=selection if self.enable_long_term else None,
permanent=True,
ti=ti,
)
# print(self.memory.permanent_work_mem.key.shape)
return is_update
def remove_from_permanent_memory(self, frame_idx):
self.memory.remove_from_permanent_memory(frame_idx)
@property
def permanent_memory_frames(self):
return list(self.memory.frame_id_to_permanent_mem_idx.keys())