Upload yolo-v3.cfg
Browse files- yolo-v3.cfg +790 -0
yolo-v3.cfg
ADDED
@@ -0,0 +1,790 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[net]
|
2 |
+
# Testing
|
3 |
+
batch=1
|
4 |
+
subdivisions=1
|
5 |
+
# Training
|
6 |
+
# batch=64
|
7 |
+
# subdivisions=16
|
8 |
+
width= 416
|
9 |
+
|
10 |
+
height = 416
|
11 |
+
channels=3
|
12 |
+
momentum=0.9
|
13 |
+
decay=0.0005
|
14 |
+
angle=0
|
15 |
+
saturation = 1.5
|
16 |
+
exposure = 1.5
|
17 |
+
hue=.1
|
18 |
+
|
19 |
+
learning_rate=0.001
|
20 |
+
burn_in=1000
|
21 |
+
max_batches = 500200
|
22 |
+
policy=steps
|
23 |
+
steps=400000,450000
|
24 |
+
scales=.1,.1
|
25 |
+
|
26 |
+
[convolutional]
|
27 |
+
batch_normalize=1
|
28 |
+
filters=32
|
29 |
+
size=3
|
30 |
+
stride=1
|
31 |
+
pad=1
|
32 |
+
activation=leaky
|
33 |
+
|
34 |
+
# Downsample
|
35 |
+
|
36 |
+
[convolutional]
|
37 |
+
batch_normalize=1
|
38 |
+
filters=64
|
39 |
+
size=3
|
40 |
+
stride=2
|
41 |
+
pad=1
|
42 |
+
activation=leaky
|
43 |
+
|
44 |
+
[convolutional]
|
45 |
+
batch_normalize=1
|
46 |
+
filters=32
|
47 |
+
size=1
|
48 |
+
stride=1
|
49 |
+
pad=1
|
50 |
+
activation=leaky
|
51 |
+
|
52 |
+
[convolutional]
|
53 |
+
batch_normalize=1
|
54 |
+
filters=64
|
55 |
+
size=3
|
56 |
+
stride=1
|
57 |
+
pad=1
|
58 |
+
activation=leaky
|
59 |
+
|
60 |
+
[shortcut]
|
61 |
+
from=-3
|
62 |
+
activation=linear
|
63 |
+
|
64 |
+
# Downsample
|
65 |
+
|
66 |
+
[convolutional]
|
67 |
+
batch_normalize=1
|
68 |
+
filters=128
|
69 |
+
size=3
|
70 |
+
stride=2
|
71 |
+
pad=1
|
72 |
+
activation=leaky
|
73 |
+
|
74 |
+
[convolutional]
|
75 |
+
batch_normalize=1
|
76 |
+
filters=64
|
77 |
+
size=1
|
78 |
+
stride=1
|
79 |
+
pad=1
|
80 |
+
activation=leaky
|
81 |
+
|
82 |
+
[convolutional]
|
83 |
+
batch_normalize=1
|
84 |
+
filters=128
|
85 |
+
size=3
|
86 |
+
stride=1
|
87 |
+
pad=1
|
88 |
+
activation=leaky
|
89 |
+
|
90 |
+
[shortcut]
|
91 |
+
from=-3
|
92 |
+
activation=linear
|
93 |
+
|
94 |
+
[convolutional]
|
95 |
+
batch_normalize=1
|
96 |
+
filters=64
|
97 |
+
size=1
|
98 |
+
stride=1
|
99 |
+
pad=1
|
100 |
+
activation=leaky
|
101 |
+
|
102 |
+
[convolutional]
|
103 |
+
batch_normalize=1
|
104 |
+
filters=128
|
105 |
+
size=3
|
106 |
+
stride=1
|
107 |
+
pad=1
|
108 |
+
activation=leaky
|
109 |
+
|
110 |
+
[shortcut]
|
111 |
+
from=-3
|
112 |
+
activation=linear
|
113 |
+
|
114 |
+
# Downsample
|
115 |
+
|
116 |
+
[convolutional]
|
117 |
+
batch_normalize=1
|
118 |
+
filters=256
|
119 |
+
size=3
|
120 |
+
stride=2
|
121 |
+
pad=1
|
122 |
+
activation=leaky
|
123 |
+
|
124 |
+
[convolutional]
|
125 |
+
batch_normalize=1
|
126 |
+
filters=128
|
127 |
+
size=1
|
128 |
+
stride=1
|
129 |
+
pad=1
|
130 |
+
activation=leaky
|
131 |
+
|
132 |
+
[convolutional]
|
133 |
+
batch_normalize=1
|
134 |
+
filters=256
|
135 |
+
size=3
|
136 |
+
stride=1
|
137 |
+
pad=1
|
138 |
+
activation=leaky
|
139 |
+
|
140 |
+
[shortcut]
|
141 |
+
from=-3
|
142 |
+
activation=linear
|
143 |
+
|
144 |
+
[convolutional]
|
145 |
+
batch_normalize=1
|
146 |
+
filters=128
|
147 |
+
size=1
|
148 |
+
stride=1
|
149 |
+
pad=1
|
150 |
+
activation=leaky
|
151 |
+
|
152 |
+
[convolutional]
|
153 |
+
batch_normalize=1
|
154 |
+
filters=256
|
155 |
+
size=3
|
156 |
+
stride=1
|
157 |
+
pad=1
|
158 |
+
activation=leaky
|
159 |
+
|
160 |
+
[shortcut]
|
161 |
+
from=-3
|
162 |
+
activation=linear
|
163 |
+
|
164 |
+
[convolutional]
|
165 |
+
batch_normalize=1
|
166 |
+
filters=128
|
167 |
+
size=1
|
168 |
+
stride=1
|
169 |
+
pad=1
|
170 |
+
activation=leaky
|
171 |
+
|
172 |
+
[convolutional]
|
173 |
+
batch_normalize=1
|
174 |
+
filters=256
|
175 |
+
size=3
|
176 |
+
stride=1
|
177 |
+
pad=1
|
178 |
+
activation=leaky
|
179 |
+
|
180 |
+
[shortcut]
|
181 |
+
from=-3
|
182 |
+
activation=linear
|
183 |
+
|
184 |
+
[convolutional]
|
185 |
+
batch_normalize=1
|
186 |
+
filters=128
|
187 |
+
size=1
|
188 |
+
stride=1
|
189 |
+
pad=1
|
190 |
+
activation=leaky
|
191 |
+
|
192 |
+
[convolutional]
|
193 |
+
batch_normalize=1
|
194 |
+
filters=256
|
195 |
+
size=3
|
196 |
+
stride=1
|
197 |
+
pad=1
|
198 |
+
activation=leaky
|
199 |
+
|
200 |
+
[shortcut]
|
201 |
+
from=-3
|
202 |
+
activation=linear
|
203 |
+
|
204 |
+
|
205 |
+
[convolutional]
|
206 |
+
batch_normalize=1
|
207 |
+
filters=128
|
208 |
+
size=1
|
209 |
+
stride=1
|
210 |
+
pad=1
|
211 |
+
activation=leaky
|
212 |
+
|
213 |
+
[convolutional]
|
214 |
+
batch_normalize=1
|
215 |
+
filters=256
|
216 |
+
size=3
|
217 |
+
stride=1
|
218 |
+
pad=1
|
219 |
+
activation=leaky
|
220 |
+
|
221 |
+
[shortcut]
|
222 |
+
from=-3
|
223 |
+
activation=linear
|
224 |
+
|
225 |
+
[convolutional]
|
226 |
+
batch_normalize=1
|
227 |
+
filters=128
|
228 |
+
size=1
|
229 |
+
stride=1
|
230 |
+
pad=1
|
231 |
+
activation=leaky
|
232 |
+
|
233 |
+
[convolutional]
|
234 |
+
batch_normalize=1
|
235 |
+
filters=256
|
236 |
+
size=3
|
237 |
+
stride=1
|
238 |
+
pad=1
|
239 |
+
activation=leaky
|
240 |
+
|
241 |
+
[shortcut]
|
242 |
+
from=-3
|
243 |
+
activation=linear
|
244 |
+
|
245 |
+
[convolutional]
|
246 |
+
batch_normalize=1
|
247 |
+
filters=128
|
248 |
+
size=1
|
249 |
+
stride=1
|
250 |
+
pad=1
|
251 |
+
activation=leaky
|
252 |
+
|
253 |
+
[convolutional]
|
254 |
+
batch_normalize=1
|
255 |
+
filters=256
|
256 |
+
size=3
|
257 |
+
stride=1
|
258 |
+
pad=1
|
259 |
+
activation=leaky
|
260 |
+
|
261 |
+
[shortcut]
|
262 |
+
from=-3
|
263 |
+
activation=linear
|
264 |
+
|
265 |
+
[convolutional]
|
266 |
+
batch_normalize=1
|
267 |
+
filters=128
|
268 |
+
size=1
|
269 |
+
stride=1
|
270 |
+
pad=1
|
271 |
+
activation=leaky
|
272 |
+
|
273 |
+
[convolutional]
|
274 |
+
batch_normalize=1
|
275 |
+
filters=256
|
276 |
+
size=3
|
277 |
+
stride=1
|
278 |
+
pad=1
|
279 |
+
activation=leaky
|
280 |
+
|
281 |
+
[shortcut]
|
282 |
+
from=-3
|
283 |
+
activation=linear
|
284 |
+
|
285 |
+
# Downsample
|
286 |
+
|
287 |
+
[convolutional]
|
288 |
+
batch_normalize=1
|
289 |
+
filters=512
|
290 |
+
size=3
|
291 |
+
stride=2
|
292 |
+
pad=1
|
293 |
+
activation=leaky
|
294 |
+
|
295 |
+
[convolutional]
|
296 |
+
batch_normalize=1
|
297 |
+
filters=256
|
298 |
+
size=1
|
299 |
+
stride=1
|
300 |
+
pad=1
|
301 |
+
activation=leaky
|
302 |
+
|
303 |
+
[convolutional]
|
304 |
+
batch_normalize=1
|
305 |
+
filters=512
|
306 |
+
size=3
|
307 |
+
stride=1
|
308 |
+
pad=1
|
309 |
+
activation=leaky
|
310 |
+
|
311 |
+
[shortcut]
|
312 |
+
from=-3
|
313 |
+
activation=linear
|
314 |
+
|
315 |
+
|
316 |
+
[convolutional]
|
317 |
+
batch_normalize=1
|
318 |
+
filters=256
|
319 |
+
size=1
|
320 |
+
stride=1
|
321 |
+
pad=1
|
322 |
+
activation=leaky
|
323 |
+
|
324 |
+
[convolutional]
|
325 |
+
batch_normalize=1
|
326 |
+
filters=512
|
327 |
+
size=3
|
328 |
+
stride=1
|
329 |
+
pad=1
|
330 |
+
activation=leaky
|
331 |
+
|
332 |
+
[shortcut]
|
333 |
+
from=-3
|
334 |
+
activation=linear
|
335 |
+
|
336 |
+
|
337 |
+
[convolutional]
|
338 |
+
batch_normalize=1
|
339 |
+
filters=256
|
340 |
+
size=1
|
341 |
+
stride=1
|
342 |
+
pad=1
|
343 |
+
activation=leaky
|
344 |
+
|
345 |
+
[convolutional]
|
346 |
+
batch_normalize=1
|
347 |
+
filters=512
|
348 |
+
size=3
|
349 |
+
stride=1
|
350 |
+
pad=1
|
351 |
+
activation=leaky
|
352 |
+
|
353 |
+
[shortcut]
|
354 |
+
from=-3
|
355 |
+
activation=linear
|
356 |
+
|
357 |
+
|
358 |
+
[convolutional]
|
359 |
+
batch_normalize=1
|
360 |
+
filters=256
|
361 |
+
size=1
|
362 |
+
stride=1
|
363 |
+
pad=1
|
364 |
+
activation=leaky
|
365 |
+
|
366 |
+
[convolutional]
|
367 |
+
batch_normalize=1
|
368 |
+
filters=512
|
369 |
+
size=3
|
370 |
+
stride=1
|
371 |
+
pad=1
|
372 |
+
activation=leaky
|
373 |
+
|
374 |
+
[shortcut]
|
375 |
+
from=-3
|
376 |
+
activation=linear
|
377 |
+
|
378 |
+
[convolutional]
|
379 |
+
batch_normalize=1
|
380 |
+
filters=256
|
381 |
+
size=1
|
382 |
+
stride=1
|
383 |
+
pad=1
|
384 |
+
activation=leaky
|
385 |
+
|
386 |
+
[convolutional]
|
387 |
+
batch_normalize=1
|
388 |
+
filters=512
|
389 |
+
size=3
|
390 |
+
stride=1
|
391 |
+
pad=1
|
392 |
+
activation=leaky
|
393 |
+
|
394 |
+
[shortcut]
|
395 |
+
from=-3
|
396 |
+
activation=linear
|
397 |
+
|
398 |
+
|
399 |
+
[convolutional]
|
400 |
+
batch_normalize=1
|
401 |
+
filters=256
|
402 |
+
size=1
|
403 |
+
stride=1
|
404 |
+
pad=1
|
405 |
+
activation=leaky
|
406 |
+
|
407 |
+
[convolutional]
|
408 |
+
batch_normalize=1
|
409 |
+
filters=512
|
410 |
+
size=3
|
411 |
+
stride=1
|
412 |
+
pad=1
|
413 |
+
activation=leaky
|
414 |
+
|
415 |
+
[shortcut]
|
416 |
+
from=-3
|
417 |
+
activation=linear
|
418 |
+
|
419 |
+
|
420 |
+
[convolutional]
|
421 |
+
batch_normalize=1
|
422 |
+
filters=256
|
423 |
+
size=1
|
424 |
+
stride=1
|
425 |
+
pad=1
|
426 |
+
activation=leaky
|
427 |
+
|
428 |
+
[convolutional]
|
429 |
+
batch_normalize=1
|
430 |
+
filters=512
|
431 |
+
size=3
|
432 |
+
stride=1
|
433 |
+
pad=1
|
434 |
+
activation=leaky
|
435 |
+
|
436 |
+
[shortcut]
|
437 |
+
from=-3
|
438 |
+
activation=linear
|
439 |
+
|
440 |
+
[convolutional]
|
441 |
+
batch_normalize=1
|
442 |
+
filters=256
|
443 |
+
size=1
|
444 |
+
stride=1
|
445 |
+
pad=1
|
446 |
+
activation=leaky
|
447 |
+
|
448 |
+
[convolutional]
|
449 |
+
batch_normalize=1
|
450 |
+
filters=512
|
451 |
+
size=3
|
452 |
+
stride=1
|
453 |
+
pad=1
|
454 |
+
activation=leaky
|
455 |
+
|
456 |
+
[shortcut]
|
457 |
+
from=-3
|
458 |
+
activation=linear
|
459 |
+
|
460 |
+
# Downsample
|
461 |
+
|
462 |
+
[convolutional]
|
463 |
+
batch_normalize=1
|
464 |
+
filters=1024
|
465 |
+
size=3
|
466 |
+
stride=2
|
467 |
+
pad=1
|
468 |
+
activation=leaky
|
469 |
+
|
470 |
+
[convolutional]
|
471 |
+
batch_normalize=1
|
472 |
+
filters=512
|
473 |
+
size=1
|
474 |
+
stride=1
|
475 |
+
pad=1
|
476 |
+
activation=leaky
|
477 |
+
|
478 |
+
[convolutional]
|
479 |
+
batch_normalize=1
|
480 |
+
filters=1024
|
481 |
+
size=3
|
482 |
+
stride=1
|
483 |
+
pad=1
|
484 |
+
activation=leaky
|
485 |
+
|
486 |
+
[shortcut]
|
487 |
+
from=-3
|
488 |
+
activation=linear
|
489 |
+
|
490 |
+
[convolutional]
|
491 |
+
batch_normalize=1
|
492 |
+
filters=512
|
493 |
+
size=1
|
494 |
+
stride=1
|
495 |
+
pad=1
|
496 |
+
activation=leaky
|
497 |
+
|
498 |
+
[convolutional]
|
499 |
+
batch_normalize=1
|
500 |
+
filters=1024
|
501 |
+
size=3
|
502 |
+
stride=1
|
503 |
+
pad=1
|
504 |
+
activation=leaky
|
505 |
+
|
506 |
+
[shortcut]
|
507 |
+
from=-3
|
508 |
+
activation=linear
|
509 |
+
|
510 |
+
[convolutional]
|
511 |
+
batch_normalize=1
|
512 |
+
filters=512
|
513 |
+
size=1
|
514 |
+
stride=1
|
515 |
+
pad=1
|
516 |
+
activation=leaky
|
517 |
+
|
518 |
+
[convolutional]
|
519 |
+
batch_normalize=1
|
520 |
+
filters=1024
|
521 |
+
size=3
|
522 |
+
stride=1
|
523 |
+
pad=1
|
524 |
+
activation=leaky
|
525 |
+
|
526 |
+
[shortcut]
|
527 |
+
from=-3
|
528 |
+
activation=linear
|
529 |
+
|
530 |
+
[convolutional]
|
531 |
+
batch_normalize=1
|
532 |
+
filters=512
|
533 |
+
size=1
|
534 |
+
stride=1
|
535 |
+
pad=1
|
536 |
+
activation=leaky
|
537 |
+
|
538 |
+
[convolutional]
|
539 |
+
batch_normalize=1
|
540 |
+
filters=1024
|
541 |
+
size=3
|
542 |
+
stride=1
|
543 |
+
pad=1
|
544 |
+
activation=leaky
|
545 |
+
|
546 |
+
[shortcut]
|
547 |
+
from=-3
|
548 |
+
activation=linear
|
549 |
+
|
550 |
+
######################
|
551 |
+
|
552 |
+
[convolutional]
|
553 |
+
batch_normalize=1
|
554 |
+
filters=512
|
555 |
+
size=1
|
556 |
+
stride=1
|
557 |
+
pad=1
|
558 |
+
activation=leaky
|
559 |
+
|
560 |
+
[convolutional]
|
561 |
+
batch_normalize=1
|
562 |
+
size=3
|
563 |
+
stride=1
|
564 |
+
pad=1
|
565 |
+
filters=1024
|
566 |
+
activation=leaky
|
567 |
+
|
568 |
+
[convolutional]
|
569 |
+
batch_normalize=1
|
570 |
+
filters=512
|
571 |
+
size=1
|
572 |
+
stride=1
|
573 |
+
pad=1
|
574 |
+
activation=leaky
|
575 |
+
|
576 |
+
[convolutional]
|
577 |
+
batch_normalize=1
|
578 |
+
size=3
|
579 |
+
stride=1
|
580 |
+
pad=1
|
581 |
+
filters=1024
|
582 |
+
activation=leaky
|
583 |
+
|
584 |
+
[convolutional]
|
585 |
+
batch_normalize=1
|
586 |
+
filters=512
|
587 |
+
size=1
|
588 |
+
stride=1
|
589 |
+
pad=1
|
590 |
+
activation=leaky
|
591 |
+
|
592 |
+
[convolutional]
|
593 |
+
batch_normalize=1
|
594 |
+
size=3
|
595 |
+
stride=1
|
596 |
+
pad=1
|
597 |
+
filters=1024
|
598 |
+
activation=leaky
|
599 |
+
|
600 |
+
[convolutional]
|
601 |
+
size=1
|
602 |
+
stride=1
|
603 |
+
pad=1
|
604 |
+
filters=255
|
605 |
+
activation=linear
|
606 |
+
|
607 |
+
|
608 |
+
[yolo]
|
609 |
+
mask = 6,7,8
|
610 |
+
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
611 |
+
classes=80
|
612 |
+
num=9
|
613 |
+
jitter=.3
|
614 |
+
ignore_thresh = .5
|
615 |
+
truth_thresh = 1
|
616 |
+
random=1
|
617 |
+
|
618 |
+
|
619 |
+
[route]
|
620 |
+
layers = -4
|
621 |
+
|
622 |
+
[convolutional]
|
623 |
+
batch_normalize=1
|
624 |
+
filters=256
|
625 |
+
size=1
|
626 |
+
stride=1
|
627 |
+
pad=1
|
628 |
+
activation=leaky
|
629 |
+
|
630 |
+
[upsample]
|
631 |
+
stride=2
|
632 |
+
|
633 |
+
[route]
|
634 |
+
layers = -1, 61
|
635 |
+
|
636 |
+
|
637 |
+
|
638 |
+
[convolutional]
|
639 |
+
batch_normalize=1
|
640 |
+
filters=256
|
641 |
+
size=1
|
642 |
+
stride=1
|
643 |
+
pad=1
|
644 |
+
activation=leaky
|
645 |
+
|
646 |
+
[convolutional]
|
647 |
+
batch_normalize=1
|
648 |
+
size=3
|
649 |
+
stride=1
|
650 |
+
pad=1
|
651 |
+
filters=512
|
652 |
+
activation=leaky
|
653 |
+
|
654 |
+
[convolutional]
|
655 |
+
batch_normalize=1
|
656 |
+
filters=256
|
657 |
+
size=1
|
658 |
+
stride=1
|
659 |
+
pad=1
|
660 |
+
activation=leaky
|
661 |
+
|
662 |
+
[convolutional]
|
663 |
+
batch_normalize=1
|
664 |
+
size=3
|
665 |
+
stride=1
|
666 |
+
pad=1
|
667 |
+
filters=512
|
668 |
+
activation=leaky
|
669 |
+
|
670 |
+
[convolutional]
|
671 |
+
batch_normalize=1
|
672 |
+
filters=256
|
673 |
+
size=1
|
674 |
+
stride=1
|
675 |
+
pad=1
|
676 |
+
activation=leaky
|
677 |
+
|
678 |
+
[convolutional]
|
679 |
+
batch_normalize=1
|
680 |
+
size=3
|
681 |
+
stride=1
|
682 |
+
pad=1
|
683 |
+
filters=512
|
684 |
+
activation=leaky
|
685 |
+
|
686 |
+
[convolutional]
|
687 |
+
size=1
|
688 |
+
stride=1
|
689 |
+
pad=1
|
690 |
+
filters=255
|
691 |
+
activation=linear
|
692 |
+
|
693 |
+
|
694 |
+
[yolo]
|
695 |
+
mask = 3,4,5
|
696 |
+
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
697 |
+
classes=80
|
698 |
+
num=9
|
699 |
+
jitter=.3
|
700 |
+
ignore_thresh = .5
|
701 |
+
truth_thresh = 1
|
702 |
+
random=1
|
703 |
+
|
704 |
+
|
705 |
+
|
706 |
+
[route]
|
707 |
+
layers = -4
|
708 |
+
|
709 |
+
[convolutional]
|
710 |
+
batch_normalize=1
|
711 |
+
filters=128
|
712 |
+
size=1
|
713 |
+
stride=1
|
714 |
+
pad=1
|
715 |
+
activation=leaky
|
716 |
+
|
717 |
+
[upsample]
|
718 |
+
stride=2
|
719 |
+
|
720 |
+
[route]
|
721 |
+
layers = -1, 36
|
722 |
+
|
723 |
+
|
724 |
+
|
725 |
+
[convolutional]
|
726 |
+
batch_normalize=1
|
727 |
+
filters=128
|
728 |
+
size=1
|
729 |
+
stride=1
|
730 |
+
pad=1
|
731 |
+
activation=leaky
|
732 |
+
|
733 |
+
[convolutional]
|
734 |
+
batch_normalize=1
|
735 |
+
size=3
|
736 |
+
stride=1
|
737 |
+
pad=1
|
738 |
+
filters=256
|
739 |
+
activation=leaky
|
740 |
+
|
741 |
+
[convolutional]
|
742 |
+
batch_normalize=1
|
743 |
+
filters=128
|
744 |
+
size=1
|
745 |
+
stride=1
|
746 |
+
pad=1
|
747 |
+
activation=leaky
|
748 |
+
|
749 |
+
[convolutional]
|
750 |
+
batch_normalize=1
|
751 |
+
size=3
|
752 |
+
stride=1
|
753 |
+
pad=1
|
754 |
+
filters=256
|
755 |
+
activation=leaky
|
756 |
+
|
757 |
+
[convolutional]
|
758 |
+
batch_normalize=1
|
759 |
+
filters=128
|
760 |
+
size=1
|
761 |
+
stride=1
|
762 |
+
pad=1
|
763 |
+
activation=leaky
|
764 |
+
|
765 |
+
[convolutional]
|
766 |
+
batch_normalize=1
|
767 |
+
size=3
|
768 |
+
stride=1
|
769 |
+
pad=1
|
770 |
+
filters=256
|
771 |
+
activation=leaky
|
772 |
+
|
773 |
+
[convolutional]
|
774 |
+
size=1
|
775 |
+
stride=1
|
776 |
+
pad=1
|
777 |
+
filters=255
|
778 |
+
activation=linear
|
779 |
+
|
780 |
+
|
781 |
+
[yolo]
|
782 |
+
mask = 0,1,2
|
783 |
+
anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
|
784 |
+
classes=80
|
785 |
+
num=9
|
786 |
+
jitter=.3
|
787 |
+
ignore_thresh = .5
|
788 |
+
truth_thresh = 1
|
789 |
+
random=1
|
790 |
+
|