lmz commited on
Commit
6ffd2ab
1 Parent(s): 8f660bb

Upload yolo-v3.cfg

Browse files
Files changed (1) hide show
  1. yolo-v3.cfg +790 -0
yolo-v3.cfg ADDED
@@ -0,0 +1,790 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [net]
2
+ # Testing
3
+ batch=1
4
+ subdivisions=1
5
+ # Training
6
+ # batch=64
7
+ # subdivisions=16
8
+ width= 416
9
+
10
+ height = 416
11
+ channels=3
12
+ momentum=0.9
13
+ decay=0.0005
14
+ angle=0
15
+ saturation = 1.5
16
+ exposure = 1.5
17
+ hue=.1
18
+
19
+ learning_rate=0.001
20
+ burn_in=1000
21
+ max_batches = 500200
22
+ policy=steps
23
+ steps=400000,450000
24
+ scales=.1,.1
25
+
26
+ [convolutional]
27
+ batch_normalize=1
28
+ filters=32
29
+ size=3
30
+ stride=1
31
+ pad=1
32
+ activation=leaky
33
+
34
+ # Downsample
35
+
36
+ [convolutional]
37
+ batch_normalize=1
38
+ filters=64
39
+ size=3
40
+ stride=2
41
+ pad=1
42
+ activation=leaky
43
+
44
+ [convolutional]
45
+ batch_normalize=1
46
+ filters=32
47
+ size=1
48
+ stride=1
49
+ pad=1
50
+ activation=leaky
51
+
52
+ [convolutional]
53
+ batch_normalize=1
54
+ filters=64
55
+ size=3
56
+ stride=1
57
+ pad=1
58
+ activation=leaky
59
+
60
+ [shortcut]
61
+ from=-3
62
+ activation=linear
63
+
64
+ # Downsample
65
+
66
+ [convolutional]
67
+ batch_normalize=1
68
+ filters=128
69
+ size=3
70
+ stride=2
71
+ pad=1
72
+ activation=leaky
73
+
74
+ [convolutional]
75
+ batch_normalize=1
76
+ filters=64
77
+ size=1
78
+ stride=1
79
+ pad=1
80
+ activation=leaky
81
+
82
+ [convolutional]
83
+ batch_normalize=1
84
+ filters=128
85
+ size=3
86
+ stride=1
87
+ pad=1
88
+ activation=leaky
89
+
90
+ [shortcut]
91
+ from=-3
92
+ activation=linear
93
+
94
+ [convolutional]
95
+ batch_normalize=1
96
+ filters=64
97
+ size=1
98
+ stride=1
99
+ pad=1
100
+ activation=leaky
101
+
102
+ [convolutional]
103
+ batch_normalize=1
104
+ filters=128
105
+ size=3
106
+ stride=1
107
+ pad=1
108
+ activation=leaky
109
+
110
+ [shortcut]
111
+ from=-3
112
+ activation=linear
113
+
114
+ # Downsample
115
+
116
+ [convolutional]
117
+ batch_normalize=1
118
+ filters=256
119
+ size=3
120
+ stride=2
121
+ pad=1
122
+ activation=leaky
123
+
124
+ [convolutional]
125
+ batch_normalize=1
126
+ filters=128
127
+ size=1
128
+ stride=1
129
+ pad=1
130
+ activation=leaky
131
+
132
+ [convolutional]
133
+ batch_normalize=1
134
+ filters=256
135
+ size=3
136
+ stride=1
137
+ pad=1
138
+ activation=leaky
139
+
140
+ [shortcut]
141
+ from=-3
142
+ activation=linear
143
+
144
+ [convolutional]
145
+ batch_normalize=1
146
+ filters=128
147
+ size=1
148
+ stride=1
149
+ pad=1
150
+ activation=leaky
151
+
152
+ [convolutional]
153
+ batch_normalize=1
154
+ filters=256
155
+ size=3
156
+ stride=1
157
+ pad=1
158
+ activation=leaky
159
+
160
+ [shortcut]
161
+ from=-3
162
+ activation=linear
163
+
164
+ [convolutional]
165
+ batch_normalize=1
166
+ filters=128
167
+ size=1
168
+ stride=1
169
+ pad=1
170
+ activation=leaky
171
+
172
+ [convolutional]
173
+ batch_normalize=1
174
+ filters=256
175
+ size=3
176
+ stride=1
177
+ pad=1
178
+ activation=leaky
179
+
180
+ [shortcut]
181
+ from=-3
182
+ activation=linear
183
+
184
+ [convolutional]
185
+ batch_normalize=1
186
+ filters=128
187
+ size=1
188
+ stride=1
189
+ pad=1
190
+ activation=leaky
191
+
192
+ [convolutional]
193
+ batch_normalize=1
194
+ filters=256
195
+ size=3
196
+ stride=1
197
+ pad=1
198
+ activation=leaky
199
+
200
+ [shortcut]
201
+ from=-3
202
+ activation=linear
203
+
204
+
205
+ [convolutional]
206
+ batch_normalize=1
207
+ filters=128
208
+ size=1
209
+ stride=1
210
+ pad=1
211
+ activation=leaky
212
+
213
+ [convolutional]
214
+ batch_normalize=1
215
+ filters=256
216
+ size=3
217
+ stride=1
218
+ pad=1
219
+ activation=leaky
220
+
221
+ [shortcut]
222
+ from=-3
223
+ activation=linear
224
+
225
+ [convolutional]
226
+ batch_normalize=1
227
+ filters=128
228
+ size=1
229
+ stride=1
230
+ pad=1
231
+ activation=leaky
232
+
233
+ [convolutional]
234
+ batch_normalize=1
235
+ filters=256
236
+ size=3
237
+ stride=1
238
+ pad=1
239
+ activation=leaky
240
+
241
+ [shortcut]
242
+ from=-3
243
+ activation=linear
244
+
245
+ [convolutional]
246
+ batch_normalize=1
247
+ filters=128
248
+ size=1
249
+ stride=1
250
+ pad=1
251
+ activation=leaky
252
+
253
+ [convolutional]
254
+ batch_normalize=1
255
+ filters=256
256
+ size=3
257
+ stride=1
258
+ pad=1
259
+ activation=leaky
260
+
261
+ [shortcut]
262
+ from=-3
263
+ activation=linear
264
+
265
+ [convolutional]
266
+ batch_normalize=1
267
+ filters=128
268
+ size=1
269
+ stride=1
270
+ pad=1
271
+ activation=leaky
272
+
273
+ [convolutional]
274
+ batch_normalize=1
275
+ filters=256
276
+ size=3
277
+ stride=1
278
+ pad=1
279
+ activation=leaky
280
+
281
+ [shortcut]
282
+ from=-3
283
+ activation=linear
284
+
285
+ # Downsample
286
+
287
+ [convolutional]
288
+ batch_normalize=1
289
+ filters=512
290
+ size=3
291
+ stride=2
292
+ pad=1
293
+ activation=leaky
294
+
295
+ [convolutional]
296
+ batch_normalize=1
297
+ filters=256
298
+ size=1
299
+ stride=1
300
+ pad=1
301
+ activation=leaky
302
+
303
+ [convolutional]
304
+ batch_normalize=1
305
+ filters=512
306
+ size=3
307
+ stride=1
308
+ pad=1
309
+ activation=leaky
310
+
311
+ [shortcut]
312
+ from=-3
313
+ activation=linear
314
+
315
+
316
+ [convolutional]
317
+ batch_normalize=1
318
+ filters=256
319
+ size=1
320
+ stride=1
321
+ pad=1
322
+ activation=leaky
323
+
324
+ [convolutional]
325
+ batch_normalize=1
326
+ filters=512
327
+ size=3
328
+ stride=1
329
+ pad=1
330
+ activation=leaky
331
+
332
+ [shortcut]
333
+ from=-3
334
+ activation=linear
335
+
336
+
337
+ [convolutional]
338
+ batch_normalize=1
339
+ filters=256
340
+ size=1
341
+ stride=1
342
+ pad=1
343
+ activation=leaky
344
+
345
+ [convolutional]
346
+ batch_normalize=1
347
+ filters=512
348
+ size=3
349
+ stride=1
350
+ pad=1
351
+ activation=leaky
352
+
353
+ [shortcut]
354
+ from=-3
355
+ activation=linear
356
+
357
+
358
+ [convolutional]
359
+ batch_normalize=1
360
+ filters=256
361
+ size=1
362
+ stride=1
363
+ pad=1
364
+ activation=leaky
365
+
366
+ [convolutional]
367
+ batch_normalize=1
368
+ filters=512
369
+ size=3
370
+ stride=1
371
+ pad=1
372
+ activation=leaky
373
+
374
+ [shortcut]
375
+ from=-3
376
+ activation=linear
377
+
378
+ [convolutional]
379
+ batch_normalize=1
380
+ filters=256
381
+ size=1
382
+ stride=1
383
+ pad=1
384
+ activation=leaky
385
+
386
+ [convolutional]
387
+ batch_normalize=1
388
+ filters=512
389
+ size=3
390
+ stride=1
391
+ pad=1
392
+ activation=leaky
393
+
394
+ [shortcut]
395
+ from=-3
396
+ activation=linear
397
+
398
+
399
+ [convolutional]
400
+ batch_normalize=1
401
+ filters=256
402
+ size=1
403
+ stride=1
404
+ pad=1
405
+ activation=leaky
406
+
407
+ [convolutional]
408
+ batch_normalize=1
409
+ filters=512
410
+ size=3
411
+ stride=1
412
+ pad=1
413
+ activation=leaky
414
+
415
+ [shortcut]
416
+ from=-3
417
+ activation=linear
418
+
419
+
420
+ [convolutional]
421
+ batch_normalize=1
422
+ filters=256
423
+ size=1
424
+ stride=1
425
+ pad=1
426
+ activation=leaky
427
+
428
+ [convolutional]
429
+ batch_normalize=1
430
+ filters=512
431
+ size=3
432
+ stride=1
433
+ pad=1
434
+ activation=leaky
435
+
436
+ [shortcut]
437
+ from=-3
438
+ activation=linear
439
+
440
+ [convolutional]
441
+ batch_normalize=1
442
+ filters=256
443
+ size=1
444
+ stride=1
445
+ pad=1
446
+ activation=leaky
447
+
448
+ [convolutional]
449
+ batch_normalize=1
450
+ filters=512
451
+ size=3
452
+ stride=1
453
+ pad=1
454
+ activation=leaky
455
+
456
+ [shortcut]
457
+ from=-3
458
+ activation=linear
459
+
460
+ # Downsample
461
+
462
+ [convolutional]
463
+ batch_normalize=1
464
+ filters=1024
465
+ size=3
466
+ stride=2
467
+ pad=1
468
+ activation=leaky
469
+
470
+ [convolutional]
471
+ batch_normalize=1
472
+ filters=512
473
+ size=1
474
+ stride=1
475
+ pad=1
476
+ activation=leaky
477
+
478
+ [convolutional]
479
+ batch_normalize=1
480
+ filters=1024
481
+ size=3
482
+ stride=1
483
+ pad=1
484
+ activation=leaky
485
+
486
+ [shortcut]
487
+ from=-3
488
+ activation=linear
489
+
490
+ [convolutional]
491
+ batch_normalize=1
492
+ filters=512
493
+ size=1
494
+ stride=1
495
+ pad=1
496
+ activation=leaky
497
+
498
+ [convolutional]
499
+ batch_normalize=1
500
+ filters=1024
501
+ size=3
502
+ stride=1
503
+ pad=1
504
+ activation=leaky
505
+
506
+ [shortcut]
507
+ from=-3
508
+ activation=linear
509
+
510
+ [convolutional]
511
+ batch_normalize=1
512
+ filters=512
513
+ size=1
514
+ stride=1
515
+ pad=1
516
+ activation=leaky
517
+
518
+ [convolutional]
519
+ batch_normalize=1
520
+ filters=1024
521
+ size=3
522
+ stride=1
523
+ pad=1
524
+ activation=leaky
525
+
526
+ [shortcut]
527
+ from=-3
528
+ activation=linear
529
+
530
+ [convolutional]
531
+ batch_normalize=1
532
+ filters=512
533
+ size=1
534
+ stride=1
535
+ pad=1
536
+ activation=leaky
537
+
538
+ [convolutional]
539
+ batch_normalize=1
540
+ filters=1024
541
+ size=3
542
+ stride=1
543
+ pad=1
544
+ activation=leaky
545
+
546
+ [shortcut]
547
+ from=-3
548
+ activation=linear
549
+
550
+ ######################
551
+
552
+ [convolutional]
553
+ batch_normalize=1
554
+ filters=512
555
+ size=1
556
+ stride=1
557
+ pad=1
558
+ activation=leaky
559
+
560
+ [convolutional]
561
+ batch_normalize=1
562
+ size=3
563
+ stride=1
564
+ pad=1
565
+ filters=1024
566
+ activation=leaky
567
+
568
+ [convolutional]
569
+ batch_normalize=1
570
+ filters=512
571
+ size=1
572
+ stride=1
573
+ pad=1
574
+ activation=leaky
575
+
576
+ [convolutional]
577
+ batch_normalize=1
578
+ size=3
579
+ stride=1
580
+ pad=1
581
+ filters=1024
582
+ activation=leaky
583
+
584
+ [convolutional]
585
+ batch_normalize=1
586
+ filters=512
587
+ size=1
588
+ stride=1
589
+ pad=1
590
+ activation=leaky
591
+
592
+ [convolutional]
593
+ batch_normalize=1
594
+ size=3
595
+ stride=1
596
+ pad=1
597
+ filters=1024
598
+ activation=leaky
599
+
600
+ [convolutional]
601
+ size=1
602
+ stride=1
603
+ pad=1
604
+ filters=255
605
+ activation=linear
606
+
607
+
608
+ [yolo]
609
+ mask = 6,7,8
610
+ anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
611
+ classes=80
612
+ num=9
613
+ jitter=.3
614
+ ignore_thresh = .5
615
+ truth_thresh = 1
616
+ random=1
617
+
618
+
619
+ [route]
620
+ layers = -4
621
+
622
+ [convolutional]
623
+ batch_normalize=1
624
+ filters=256
625
+ size=1
626
+ stride=1
627
+ pad=1
628
+ activation=leaky
629
+
630
+ [upsample]
631
+ stride=2
632
+
633
+ [route]
634
+ layers = -1, 61
635
+
636
+
637
+
638
+ [convolutional]
639
+ batch_normalize=1
640
+ filters=256
641
+ size=1
642
+ stride=1
643
+ pad=1
644
+ activation=leaky
645
+
646
+ [convolutional]
647
+ batch_normalize=1
648
+ size=3
649
+ stride=1
650
+ pad=1
651
+ filters=512
652
+ activation=leaky
653
+
654
+ [convolutional]
655
+ batch_normalize=1
656
+ filters=256
657
+ size=1
658
+ stride=1
659
+ pad=1
660
+ activation=leaky
661
+
662
+ [convolutional]
663
+ batch_normalize=1
664
+ size=3
665
+ stride=1
666
+ pad=1
667
+ filters=512
668
+ activation=leaky
669
+
670
+ [convolutional]
671
+ batch_normalize=1
672
+ filters=256
673
+ size=1
674
+ stride=1
675
+ pad=1
676
+ activation=leaky
677
+
678
+ [convolutional]
679
+ batch_normalize=1
680
+ size=3
681
+ stride=1
682
+ pad=1
683
+ filters=512
684
+ activation=leaky
685
+
686
+ [convolutional]
687
+ size=1
688
+ stride=1
689
+ pad=1
690
+ filters=255
691
+ activation=linear
692
+
693
+
694
+ [yolo]
695
+ mask = 3,4,5
696
+ anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
697
+ classes=80
698
+ num=9
699
+ jitter=.3
700
+ ignore_thresh = .5
701
+ truth_thresh = 1
702
+ random=1
703
+
704
+
705
+
706
+ [route]
707
+ layers = -4
708
+
709
+ [convolutional]
710
+ batch_normalize=1
711
+ filters=128
712
+ size=1
713
+ stride=1
714
+ pad=1
715
+ activation=leaky
716
+
717
+ [upsample]
718
+ stride=2
719
+
720
+ [route]
721
+ layers = -1, 36
722
+
723
+
724
+
725
+ [convolutional]
726
+ batch_normalize=1
727
+ filters=128
728
+ size=1
729
+ stride=1
730
+ pad=1
731
+ activation=leaky
732
+
733
+ [convolutional]
734
+ batch_normalize=1
735
+ size=3
736
+ stride=1
737
+ pad=1
738
+ filters=256
739
+ activation=leaky
740
+
741
+ [convolutional]
742
+ batch_normalize=1
743
+ filters=128
744
+ size=1
745
+ stride=1
746
+ pad=1
747
+ activation=leaky
748
+
749
+ [convolutional]
750
+ batch_normalize=1
751
+ size=3
752
+ stride=1
753
+ pad=1
754
+ filters=256
755
+ activation=leaky
756
+
757
+ [convolutional]
758
+ batch_normalize=1
759
+ filters=128
760
+ size=1
761
+ stride=1
762
+ pad=1
763
+ activation=leaky
764
+
765
+ [convolutional]
766
+ batch_normalize=1
767
+ size=3
768
+ stride=1
769
+ pad=1
770
+ filters=256
771
+ activation=leaky
772
+
773
+ [convolutional]
774
+ size=1
775
+ stride=1
776
+ pad=1
777
+ filters=255
778
+ activation=linear
779
+
780
+
781
+ [yolo]
782
+ mask = 0,1,2
783
+ anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
784
+ classes=80
785
+ num=9
786
+ jitter=.3
787
+ ignore_thresh = .5
788
+ truth_thresh = 1
789
+ random=1
790
+