lmg-anon commited on
Commit
52721b3
1 Parent(s): f8c690a

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. checkpoint-100/README.md +204 -0
  2. checkpoint-100/adapter_config.json +31 -0
  3. checkpoint-100/adapter_model.safetensors +3 -0
  4. checkpoint-100/optimizer.pt +3 -0
  5. checkpoint-100/rng_state.pth +3 -0
  6. checkpoint-100/scheduler.pt +3 -0
  7. checkpoint-100/trainer_state.json +621 -0
  8. checkpoint-100/training_args.bin +3 -0
  9. checkpoint-150/README.md +204 -0
  10. checkpoint-150/adapter_config.json +31 -0
  11. checkpoint-150/adapter_model.safetensors +3 -0
  12. checkpoint-150/optimizer.pt +3 -0
  13. checkpoint-150/rng_state.pth +3 -0
  14. checkpoint-150/scheduler.pt +3 -0
  15. checkpoint-150/trainer_state.json +921 -0
  16. checkpoint-150/training_args.bin +3 -0
  17. checkpoint-200/README.md +204 -0
  18. checkpoint-200/adapter_config.json +31 -0
  19. checkpoint-200/adapter_model.safetensors +3 -0
  20. checkpoint-200/optimizer.pt +3 -0
  21. checkpoint-200/rng_state.pth +3 -0
  22. checkpoint-200/scheduler.pt +3 -0
  23. checkpoint-200/trainer_state.json +1221 -0
  24. checkpoint-200/training_args.bin +3 -0
  25. checkpoint-250/README.md +204 -0
  26. checkpoint-250/adapter_config.json +31 -0
  27. checkpoint-250/adapter_model.safetensors +3 -0
  28. checkpoint-250/optimizer.pt +3 -0
  29. checkpoint-250/rng_state.pth +3 -0
  30. checkpoint-250/scheduler.pt +3 -0
  31. checkpoint-250/trainer_state.json +1521 -0
  32. checkpoint-250/training_args.bin +3 -0
  33. checkpoint-300/README.md +204 -0
  34. checkpoint-300/adapter_config.json +31 -0
  35. checkpoint-300/adapter_model.safetensors +3 -0
  36. checkpoint-300/optimizer.pt +3 -0
  37. checkpoint-300/rng_state.pth +3 -0
  38. checkpoint-300/scheduler.pt +3 -0
  39. checkpoint-300/trainer_state.json +1821 -0
  40. checkpoint-300/training_args.bin +3 -0
  41. checkpoint-350/README.md +204 -0
  42. checkpoint-350/adapter_config.json +31 -0
  43. checkpoint-350/adapter_model.safetensors +3 -0
  44. checkpoint-350/optimizer.pt +3 -0
  45. checkpoint-350/rng_state.pth +3 -0
  46. checkpoint-350/scheduler.pt +3 -0
  47. checkpoint-350/trainer_state.json +2121 -0
  48. checkpoint-350/training_args.bin +3 -0
  49. checkpoint-50/README.md +204 -0
  50. checkpoint-50/adapter_config.json +31 -0
checkpoint-100/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: NousResearch/Llama-2-13b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "NousResearch/Llama-2-13b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "o_proj",
23
+ "up_proj",
24
+ "k_proj",
25
+ "gate_proj",
26
+ "down_proj",
27
+ "v_proj",
28
+ "q_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:818ad0a09302d01af4bee7c4a8ac756c0feb509535ce36961baf72c9357ef5a9
3
+ size 2002857080
checkpoint-100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45a521219e0dea101909f4601f465589ec1b358b47402a630069822388c42ad4
3
+ size 1004004436
checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4c917636c7a58af68a29056522a757e9f9b99005b776641aa157c536967817d
3
+ size 14244
checkpoint-100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26a2852d2c1758fce5ccddfd0a0b1b7abc74840e40494a3f17bf7ca05b28653f
3
+ size 1064
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,621 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.31189083820662766,
5
+ "eval_steps": 500,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5e-05,
14
+ "loss": 1.0506,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 0.0001,
20
+ "loss": 0.9988,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.00015000000000000001,
26
+ "loss": 0.9783,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.0002,
32
+ "loss": 0.9849,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 0.00025,
38
+ "loss": 1.0159,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 0.00030000000000000003,
44
+ "loss": 0.9847,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.00034999999999999994,
50
+ "loss": 0.9101,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.0004,
56
+ "loss": 0.9445,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 0.00045,
62
+ "loss": 0.8578,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 0.0005,
68
+ "loss": 0.9356,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 0.0005499999999999999,
74
+ "loss": 0.8395,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 0.0006000000000000001,
80
+ "loss": 0.9002,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 0.00065,
86
+ "loss": 0.8955,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 0.0006499959204043461,
92
+ "loss": 0.902,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.05,
97
+ "learning_rate": 0.0006499836817198032,
98
+ "loss": 0.8578,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 0.0006499632842536263,
104
+ "loss": 0.9005,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 0.0006499347285178979,
110
+ "loss": 0.8539,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.06,
115
+ "learning_rate": 0.0006498980152295153,
116
+ "loss": 0.8595,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 0.0006498531453101735,
122
+ "loss": 0.8845,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.06,
127
+ "learning_rate": 0.0006498001198863406,
128
+ "loss": 0.8924,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.07,
133
+ "learning_rate": 0.000649738940289231,
134
+ "loss": 0.8365,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.07,
139
+ "learning_rate": 0.0006496696080547707,
140
+ "loss": 0.8462,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.07,
145
+ "learning_rate": 0.0006495921249235596,
146
+ "loss": 0.8528,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.07,
151
+ "learning_rate": 0.0006495064928408277,
152
+ "loss": 0.8159,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.08,
157
+ "learning_rate": 0.0006494127139563859,
158
+ "loss": 0.8245,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.08,
163
+ "learning_rate": 0.000649310790624572,
164
+ "loss": 0.8081,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.08,
169
+ "learning_rate": 0.0006492007254041924,
170
+ "loss": 0.8535,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.09,
175
+ "learning_rate": 0.0006490825210584566,
176
+ "loss": 0.8162,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.09,
181
+ "learning_rate": 0.0006489561805549089,
182
+ "loss": 0.8456,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.09,
187
+ "learning_rate": 0.0006488217070653535,
188
+ "loss": 0.7799,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.1,
193
+ "learning_rate": 0.0006486791039657748,
194
+ "loss": 0.8088,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.1,
199
+ "learning_rate": 0.0006485283748362524,
200
+ "loss": 0.8683,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.1,
205
+ "learning_rate": 0.0006483695234608723,
206
+ "loss": 0.8871,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.11,
211
+ "learning_rate": 0.0006482025538276304,
212
+ "loss": 0.7711,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.11,
217
+ "learning_rate": 0.0006480274701283335,
218
+ "loss": 0.7621,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.11,
223
+ "learning_rate": 0.0006478442767584937,
224
+ "loss": 0.8243,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.12,
229
+ "learning_rate": 0.0006476529783172177,
230
+ "loss": 0.8257,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.12,
235
+ "learning_rate": 0.0006474535796070919,
236
+ "loss": 0.8141,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.12,
241
+ "learning_rate": 0.0006472460856340619,
242
+ "loss": 0.8109,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.12,
247
+ "learning_rate": 0.000647030501607306,
248
+ "loss": 0.7873,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.13,
253
+ "learning_rate": 0.000646806832939105,
254
+ "loss": 0.7386,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.13,
259
+ "learning_rate": 0.0006465750852447068,
260
+ "loss": 0.8636,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.13,
265
+ "learning_rate": 0.0006463352643421846,
266
+ "loss": 0.7357,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.14,
271
+ "learning_rate": 0.0006460873762522906,
272
+ "loss": 0.8142,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.14,
277
+ "learning_rate": 0.0006458314271983063,
278
+ "loss": 0.7275,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.14,
283
+ "learning_rate": 0.0006455674236058847,
284
+ "loss": 0.8029,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.15,
289
+ "learning_rate": 0.00064529537210289,
290
+ "loss": 0.7901,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.15,
295
+ "learning_rate": 0.0006450152795192307,
296
+ "loss": 0.7788,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.15,
301
+ "learning_rate": 0.0006447271528866881,
302
+ "loss": 0.7621,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.16,
307
+ "learning_rate": 0.0006444309994387402,
308
+ "loss": 0.7537,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.16,
313
+ "learning_rate": 0.0006441268266103796,
314
+ "loss": 0.7917,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.16,
319
+ "learning_rate": 0.0006438146420379274,
320
+ "loss": 0.8451,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.17,
325
+ "learning_rate": 0.0006434944535588411,
326
+ "loss": 0.8369,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.17,
331
+ "learning_rate": 0.0006431662692115173,
332
+ "loss": 0.7637,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.17,
337
+ "learning_rate": 0.0006428300972350914,
338
+ "loss": 0.8365,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.17,
343
+ "learning_rate": 0.0006424859460692295,
344
+ "loss": 0.7633,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.18,
349
+ "learning_rate": 0.0006421338243539165,
350
+ "loss": 0.7718,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.18,
355
+ "learning_rate": 0.0006417737409292403,
356
+ "loss": 0.7672,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.18,
361
+ "learning_rate": 0.0006414057048351684,
362
+ "loss": 0.8107,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.19,
367
+ "learning_rate": 0.0006410297253113221,
368
+ "loss": 0.7979,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.19,
373
+ "learning_rate": 0.0006406458117967443,
374
+ "loss": 0.7634,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.19,
379
+ "learning_rate": 0.0006402539739296618,
380
+ "loss": 0.7504,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.2,
385
+ "learning_rate": 0.0006398542215472443,
386
+ "loss": 0.8082,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.2,
391
+ "learning_rate": 0.0006394465646853571,
392
+ "loss": 0.8355,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.2,
397
+ "learning_rate": 0.0006390310135783086,
398
+ "loss": 0.7458,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.21,
403
+ "learning_rate": 0.0006386075786585944,
404
+ "loss": 0.7525,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.21,
409
+ "learning_rate": 0.0006381762705566343,
410
+ "loss": 0.7464,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.21,
415
+ "learning_rate": 0.0006377371001005063,
416
+ "loss": 0.78,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.22,
421
+ "learning_rate": 0.0006372900783156745,
422
+ "loss": 0.7752,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.22,
427
+ "learning_rate": 0.0006368352164247117,
428
+ "loss": 0.7299,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.22,
433
+ "learning_rate": 0.0006363725258470184,
434
+ "loss": 0.7722,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.22,
439
+ "learning_rate": 0.0006359020181985365,
440
+ "loss": 0.8236,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.23,
445
+ "learning_rate": 0.0006354237052914561,
446
+ "loss": 0.7589,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.23,
451
+ "learning_rate": 0.0006349375991339202,
452
+ "loss": 0.7948,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.23,
457
+ "learning_rate": 0.0006344437119297233,
458
+ "loss": 0.7528,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.24,
463
+ "learning_rate": 0.0006339420560780045,
464
+ "loss": 0.7842,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.24,
469
+ "learning_rate": 0.0006334326441729361,
470
+ "loss": 0.7541,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.24,
475
+ "learning_rate": 0.000632915489003408,
476
+ "loss": 0.7425,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.25,
481
+ "learning_rate": 0.0006323906035527062,
482
+ "loss": 0.8168,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.25,
487
+ "learning_rate": 0.0006318580009981871,
488
+ "loss": 0.8074,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.25,
493
+ "learning_rate": 0.0006313176947109465,
494
+ "loss": 0.7679,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.26,
499
+ "learning_rate": 0.0006307696982554838,
500
+ "loss": 0.7465,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.26,
505
+ "learning_rate": 0.0006302140253893622,
506
+ "loss": 0.7073,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.26,
511
+ "learning_rate": 0.0006296506900628619,
512
+ "loss": 0.7687,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.27,
517
+ "learning_rate": 0.0006290797064186315,
518
+ "loss": 0.7578,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.27,
523
+ "learning_rate": 0.0006285010887913319,
524
+ "loss": 0.7494,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.27,
529
+ "learning_rate": 0.0006279148517072765,
530
+ "loss": 0.7326,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.27,
535
+ "learning_rate": 0.000627321009884067,
536
+ "loss": 0.7603,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.28,
541
+ "learning_rate": 0.0006267195782302236,
542
+ "loss": 0.8141,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.28,
547
+ "learning_rate": 0.0006261105718448105,
548
+ "loss": 0.7542,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.28,
553
+ "learning_rate": 0.0006254940060170575,
554
+ "loss": 0.7597,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.29,
559
+ "learning_rate": 0.0006248698962259753,
560
+ "loss": 0.7332,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.29,
565
+ "learning_rate": 0.0006242382581399676,
566
+ "loss": 0.7031,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.29,
571
+ "learning_rate": 0.0006235991076164375,
572
+ "loss": 0.7258,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.3,
577
+ "learning_rate": 0.0006229524607013892,
578
+ "loss": 0.7634,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.3,
583
+ "learning_rate": 0.0006222983336290254,
584
+ "loss": 0.765,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.3,
589
+ "learning_rate": 0.0006216367428213398,
590
+ "loss": 0.7246,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.31,
595
+ "learning_rate": 0.0006209677048877046,
596
+ "loss": 0.7115,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.31,
601
+ "learning_rate": 0.0006202912366244535,
602
+ "loss": 0.6748,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.31,
607
+ "learning_rate": 0.0006196073550144604,
608
+ "loss": 0.6995,
609
+ "step": 100
610
+ }
611
+ ],
612
+ "logging_steps": 1,
613
+ "max_steps": 640,
614
+ "num_input_tokens_seen": 0,
615
+ "num_train_epochs": 2,
616
+ "save_steps": 50,
617
+ "total_flos": 2.593333107572736e+17,
618
+ "train_batch_size": 4,
619
+ "trial_name": null,
620
+ "trial_params": null
621
+ }
checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d688198fe54ccac5c0a98d11fb9e7224690ace94f7e483ba1d16db91cf33a5c4
3
+ size 4664
checkpoint-150/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: NousResearch/Llama-2-13b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-150/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "NousResearch/Llama-2-13b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "o_proj",
23
+ "up_proj",
24
+ "k_proj",
25
+ "gate_proj",
26
+ "down_proj",
27
+ "v_proj",
28
+ "q_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
checkpoint-150/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f30b0e7ca44dc587b2f2c4be5469e60ccdb54c6fc9005580666c6ba2dd99561b
3
+ size 2002857080
checkpoint-150/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5abde634bb65c717c1ce646e6405f01b8adb3bda70c2ebb1fb3de6bc7a88be02
3
+ size 1004004436
checkpoint-150/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4c917636c7a58af68a29056522a757e9f9b99005b776641aa157c536967817d
3
+ size 14244
checkpoint-150/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b56f89411c5f31f78bae170c9165fda470012498c331d2e04c2e63fe37732a9c
3
+ size 1064
checkpoint-150/trainer_state.json ADDED
@@ -0,0 +1,921 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.4678362573099415,
5
+ "eval_steps": 500,
6
+ "global_step": 150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5e-05,
14
+ "loss": 1.0506,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 0.0001,
20
+ "loss": 0.9988,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.00015000000000000001,
26
+ "loss": 0.9783,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.0002,
32
+ "loss": 0.9849,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 0.00025,
38
+ "loss": 1.0159,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 0.00030000000000000003,
44
+ "loss": 0.9847,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.00034999999999999994,
50
+ "loss": 0.9101,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.0004,
56
+ "loss": 0.9445,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 0.00045,
62
+ "loss": 0.8578,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 0.0005,
68
+ "loss": 0.9356,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 0.0005499999999999999,
74
+ "loss": 0.8395,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 0.0006000000000000001,
80
+ "loss": 0.9002,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 0.00065,
86
+ "loss": 0.8955,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 0.0006499959204043461,
92
+ "loss": 0.902,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.05,
97
+ "learning_rate": 0.0006499836817198032,
98
+ "loss": 0.8578,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 0.0006499632842536263,
104
+ "loss": 0.9005,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 0.0006499347285178979,
110
+ "loss": 0.8539,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.06,
115
+ "learning_rate": 0.0006498980152295153,
116
+ "loss": 0.8595,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 0.0006498531453101735,
122
+ "loss": 0.8845,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.06,
127
+ "learning_rate": 0.0006498001198863406,
128
+ "loss": 0.8924,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.07,
133
+ "learning_rate": 0.000649738940289231,
134
+ "loss": 0.8365,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.07,
139
+ "learning_rate": 0.0006496696080547707,
140
+ "loss": 0.8462,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.07,
145
+ "learning_rate": 0.0006495921249235596,
146
+ "loss": 0.8528,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.07,
151
+ "learning_rate": 0.0006495064928408277,
152
+ "loss": 0.8159,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.08,
157
+ "learning_rate": 0.0006494127139563859,
158
+ "loss": 0.8245,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.08,
163
+ "learning_rate": 0.000649310790624572,
164
+ "loss": 0.8081,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.08,
169
+ "learning_rate": 0.0006492007254041924,
170
+ "loss": 0.8535,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.09,
175
+ "learning_rate": 0.0006490825210584566,
176
+ "loss": 0.8162,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.09,
181
+ "learning_rate": 0.0006489561805549089,
182
+ "loss": 0.8456,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.09,
187
+ "learning_rate": 0.0006488217070653535,
188
+ "loss": 0.7799,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.1,
193
+ "learning_rate": 0.0006486791039657748,
194
+ "loss": 0.8088,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.1,
199
+ "learning_rate": 0.0006485283748362524,
200
+ "loss": 0.8683,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.1,
205
+ "learning_rate": 0.0006483695234608723,
206
+ "loss": 0.8871,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.11,
211
+ "learning_rate": 0.0006482025538276304,
212
+ "loss": 0.7711,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.11,
217
+ "learning_rate": 0.0006480274701283335,
218
+ "loss": 0.7621,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.11,
223
+ "learning_rate": 0.0006478442767584937,
224
+ "loss": 0.8243,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.12,
229
+ "learning_rate": 0.0006476529783172177,
230
+ "loss": 0.8257,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.12,
235
+ "learning_rate": 0.0006474535796070919,
236
+ "loss": 0.8141,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.12,
241
+ "learning_rate": 0.0006472460856340619,
242
+ "loss": 0.8109,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.12,
247
+ "learning_rate": 0.000647030501607306,
248
+ "loss": 0.7873,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.13,
253
+ "learning_rate": 0.000646806832939105,
254
+ "loss": 0.7386,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.13,
259
+ "learning_rate": 0.0006465750852447068,
260
+ "loss": 0.8636,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.13,
265
+ "learning_rate": 0.0006463352643421846,
266
+ "loss": 0.7357,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.14,
271
+ "learning_rate": 0.0006460873762522906,
272
+ "loss": 0.8142,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.14,
277
+ "learning_rate": 0.0006458314271983063,
278
+ "loss": 0.7275,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.14,
283
+ "learning_rate": 0.0006455674236058847,
284
+ "loss": 0.8029,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.15,
289
+ "learning_rate": 0.00064529537210289,
290
+ "loss": 0.7901,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.15,
295
+ "learning_rate": 0.0006450152795192307,
296
+ "loss": 0.7788,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.15,
301
+ "learning_rate": 0.0006447271528866881,
302
+ "loss": 0.7621,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.16,
307
+ "learning_rate": 0.0006444309994387402,
308
+ "loss": 0.7537,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.16,
313
+ "learning_rate": 0.0006441268266103796,
314
+ "loss": 0.7917,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.16,
319
+ "learning_rate": 0.0006438146420379274,
320
+ "loss": 0.8451,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.17,
325
+ "learning_rate": 0.0006434944535588411,
326
+ "loss": 0.8369,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.17,
331
+ "learning_rate": 0.0006431662692115173,
332
+ "loss": 0.7637,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.17,
337
+ "learning_rate": 0.0006428300972350914,
338
+ "loss": 0.8365,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.17,
343
+ "learning_rate": 0.0006424859460692295,
344
+ "loss": 0.7633,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.18,
349
+ "learning_rate": 0.0006421338243539165,
350
+ "loss": 0.7718,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.18,
355
+ "learning_rate": 0.0006417737409292403,
356
+ "loss": 0.7672,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.18,
361
+ "learning_rate": 0.0006414057048351684,
362
+ "loss": 0.8107,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.19,
367
+ "learning_rate": 0.0006410297253113221,
368
+ "loss": 0.7979,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.19,
373
+ "learning_rate": 0.0006406458117967443,
374
+ "loss": 0.7634,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.19,
379
+ "learning_rate": 0.0006402539739296618,
380
+ "loss": 0.7504,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.2,
385
+ "learning_rate": 0.0006398542215472443,
386
+ "loss": 0.8082,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.2,
391
+ "learning_rate": 0.0006394465646853571,
392
+ "loss": 0.8355,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.2,
397
+ "learning_rate": 0.0006390310135783086,
398
+ "loss": 0.7458,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.21,
403
+ "learning_rate": 0.0006386075786585944,
404
+ "loss": 0.7525,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.21,
409
+ "learning_rate": 0.0006381762705566343,
410
+ "loss": 0.7464,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.21,
415
+ "learning_rate": 0.0006377371001005063,
416
+ "loss": 0.78,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.22,
421
+ "learning_rate": 0.0006372900783156745,
422
+ "loss": 0.7752,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.22,
427
+ "learning_rate": 0.0006368352164247117,
428
+ "loss": 0.7299,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.22,
433
+ "learning_rate": 0.0006363725258470184,
434
+ "loss": 0.7722,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.22,
439
+ "learning_rate": 0.0006359020181985365,
440
+ "loss": 0.8236,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.23,
445
+ "learning_rate": 0.0006354237052914561,
446
+ "loss": 0.7589,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.23,
451
+ "learning_rate": 0.0006349375991339202,
452
+ "loss": 0.7948,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.23,
457
+ "learning_rate": 0.0006344437119297233,
458
+ "loss": 0.7528,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.24,
463
+ "learning_rate": 0.0006339420560780045,
464
+ "loss": 0.7842,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.24,
469
+ "learning_rate": 0.0006334326441729361,
470
+ "loss": 0.7541,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.24,
475
+ "learning_rate": 0.000632915489003408,
476
+ "loss": 0.7425,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.25,
481
+ "learning_rate": 0.0006323906035527062,
482
+ "loss": 0.8168,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.25,
487
+ "learning_rate": 0.0006318580009981871,
488
+ "loss": 0.8074,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.25,
493
+ "learning_rate": 0.0006313176947109465,
494
+ "loss": 0.7679,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.26,
499
+ "learning_rate": 0.0006307696982554838,
500
+ "loss": 0.7465,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.26,
505
+ "learning_rate": 0.0006302140253893622,
506
+ "loss": 0.7073,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.26,
511
+ "learning_rate": 0.0006296506900628619,
512
+ "loss": 0.7687,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.27,
517
+ "learning_rate": 0.0006290797064186315,
518
+ "loss": 0.7578,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.27,
523
+ "learning_rate": 0.0006285010887913319,
524
+ "loss": 0.7494,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.27,
529
+ "learning_rate": 0.0006279148517072765,
530
+ "loss": 0.7326,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.27,
535
+ "learning_rate": 0.000627321009884067,
536
+ "loss": 0.7603,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.28,
541
+ "learning_rate": 0.0006267195782302236,
542
+ "loss": 0.8141,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.28,
547
+ "learning_rate": 0.0006261105718448105,
548
+ "loss": 0.7542,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.28,
553
+ "learning_rate": 0.0006254940060170575,
554
+ "loss": 0.7597,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.29,
559
+ "learning_rate": 0.0006248698962259753,
560
+ "loss": 0.7332,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.29,
565
+ "learning_rate": 0.0006242382581399676,
566
+ "loss": 0.7031,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.29,
571
+ "learning_rate": 0.0006235991076164375,
572
+ "loss": 0.7258,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.3,
577
+ "learning_rate": 0.0006229524607013892,
578
+ "loss": 0.7634,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.3,
583
+ "learning_rate": 0.0006222983336290254,
584
+ "loss": 0.765,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.3,
589
+ "learning_rate": 0.0006216367428213398,
590
+ "loss": 0.7246,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.31,
595
+ "learning_rate": 0.0006209677048877046,
596
+ "loss": 0.7115,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.31,
601
+ "learning_rate": 0.0006202912366244535,
602
+ "loss": 0.6748,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.31,
607
+ "learning_rate": 0.0006196073550144604,
608
+ "loss": 0.6995,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.32,
613
+ "learning_rate": 0.0006189160772267127,
614
+ "loss": 0.7764,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.32,
619
+ "learning_rate": 0.00061821742061588,
620
+ "loss": 0.8628,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.32,
625
+ "learning_rate": 0.0006175114027218794,
626
+ "loss": 0.7266,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.32,
631
+ "learning_rate": 0.0006167980412694342,
632
+ "loss": 0.7557,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.33,
637
+ "learning_rate": 0.0006160773541676288,
638
+ "loss": 0.7518,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.33,
643
+ "learning_rate": 0.0006153493595094602,
644
+ "loss": 0.7589,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.33,
649
+ "learning_rate": 0.000614614075571383,
650
+ "loss": 0.7506,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.34,
655
+ "learning_rate": 0.0006138715208128501,
656
+ "loss": 0.6617,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.34,
661
+ "learning_rate": 0.0006131217138758505,
662
+ "loss": 0.7396,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.34,
667
+ "learning_rate": 0.0006123646735844401,
668
+ "loss": 0.7666,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.35,
673
+ "learning_rate": 0.00061160041894427,
674
+ "loss": 0.7555,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.35,
679
+ "learning_rate": 0.0006108289691421089,
680
+ "loss": 0.7301,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.35,
685
+ "learning_rate": 0.0006100503435453614,
686
+ "loss": 0.7364,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.36,
691
+ "learning_rate": 0.0006092645617015822,
692
+ "loss": 0.7461,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.36,
697
+ "learning_rate": 0.0006084716433379844,
698
+ "loss": 0.8086,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.36,
703
+ "learning_rate": 0.0006076716083609456,
704
+ "loss": 0.7577,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.36,
709
+ "learning_rate": 0.0006068644768555068,
710
+ "loss": 0.7094,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.37,
715
+ "learning_rate": 0.0006060502690848696,
716
+ "loss": 0.726,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.37,
721
+ "learning_rate": 0.0006052290054898859,
722
+ "loss": 0.7243,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.37,
727
+ "learning_rate": 0.0006044007066885458,
728
+ "loss": 0.7119,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.38,
733
+ "learning_rate": 0.0006035653934754598,
734
+ "loss": 0.7049,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.38,
739
+ "learning_rate": 0.0006027230868213366,
740
+ "loss": 0.7424,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.38,
745
+ "learning_rate": 0.0006018738078724563,
746
+ "loss": 0.7271,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.39,
751
+ "learning_rate": 0.0006010175779501405,
752
+ "loss": 0.7996,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.39,
757
+ "learning_rate": 0.0006001544185502158,
758
+ "loss": 0.7468,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.39,
763
+ "learning_rate": 0.0005992843513424754,
764
+ "loss": 0.7513,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.4,
769
+ "learning_rate": 0.0005984073981701338,
770
+ "loss": 0.7461,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.4,
775
+ "learning_rate": 0.0005975235810492794,
776
+ "loss": 0.6821,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.4,
781
+ "learning_rate": 0.0005966329221683215,
782
+ "loss": 0.7314,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.41,
787
+ "learning_rate": 0.0005957354438874327,
788
+ "loss": 0.714,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.41,
793
+ "learning_rate": 0.0005948311687379884,
794
+ "loss": 0.7339,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.41,
799
+ "learning_rate": 0.000593920119422001,
800
+ "loss": 0.7021,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.41,
805
+ "learning_rate": 0.0005930023188115492,
806
+ "loss": 0.7228,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.42,
811
+ "learning_rate": 0.0005920777899482046,
812
+ "loss": 0.7107,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.42,
817
+ "learning_rate": 0.0005911465560424532,
818
+ "loss": 0.659,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.42,
823
+ "learning_rate": 0.0005902086404731118,
824
+ "loss": 0.7028,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.43,
829
+ "learning_rate": 0.0005892640667867423,
830
+ "loss": 0.7275,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.43,
835
+ "learning_rate": 0.00058831285869706,
836
+ "loss": 0.6889,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.43,
841
+ "learning_rate": 0.0005873550400843378,
842
+ "loss": 0.7891,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.44,
847
+ "learning_rate": 0.0005863906349948074,
848
+ "loss": 0.7904,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.44,
853
+ "learning_rate": 0.0005854196676400555,
854
+ "loss": 0.6674,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.44,
859
+ "learning_rate": 0.0005844421623964157,
860
+ "loss": 0.7352,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.45,
865
+ "learning_rate": 0.0005834581438043563,
866
+ "loss": 0.6965,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.45,
871
+ "learning_rate": 0.000582467636567865,
872
+ "loss": 0.7238,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.45,
877
+ "learning_rate": 0.0005814706655538279,
878
+ "loss": 0.7064,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.46,
883
+ "learning_rate": 0.0005804672557914059,
884
+ "loss": 0.6984,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.46,
889
+ "learning_rate": 0.0005794574324714057,
890
+ "loss": 0.7594,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.46,
895
+ "learning_rate": 0.0005784412209456479,
896
+ "loss": 0.6884,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.46,
901
+ "learning_rate": 0.00057741864672633,
902
+ "loss": 0.7141,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.47,
907
+ "learning_rate": 0.0005763897354853866,
908
+ "loss": 0.705,
909
+ "step": 150
910
+ }
911
+ ],
912
+ "logging_steps": 1,
913
+ "max_steps": 640,
914
+ "num_input_tokens_seen": 0,
915
+ "num_train_epochs": 2,
916
+ "save_steps": 50,
917
+ "total_flos": 3.889192088892211e+17,
918
+ "train_batch_size": 4,
919
+ "trial_name": null,
920
+ "trial_params": null
921
+ }
checkpoint-150/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d688198fe54ccac5c0a98d11fb9e7224690ace94f7e483ba1d16db91cf33a5c4
3
+ size 4664
checkpoint-200/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: NousResearch/Llama-2-13b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "NousResearch/Llama-2-13b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "o_proj",
23
+ "up_proj",
24
+ "k_proj",
25
+ "gate_proj",
26
+ "down_proj",
27
+ "v_proj",
28
+ "q_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b26badf95db20e2caeb27a77972d8c0cb9c4f40b9b2553064f8c3060fe4fdfd9
3
+ size 2002857080
checkpoint-200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be3a4233a403d0327ee88407231c206d9ccb18dcaee59e577eeb310c10819925
3
+ size 1004004436
checkpoint-200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4c917636c7a58af68a29056522a757e9f9b99005b776641aa157c536967817d
3
+ size 14244
checkpoint-200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b65d73ea334cd90562f43b83c049540453fcb1263915d214b8d4b51fda32e89a
3
+ size 1064
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,1221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.6237816764132553,
5
+ "eval_steps": 500,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5e-05,
14
+ "loss": 1.0506,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 0.0001,
20
+ "loss": 0.9988,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.00015000000000000001,
26
+ "loss": 0.9783,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.0002,
32
+ "loss": 0.9849,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 0.00025,
38
+ "loss": 1.0159,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 0.00030000000000000003,
44
+ "loss": 0.9847,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.00034999999999999994,
50
+ "loss": 0.9101,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.0004,
56
+ "loss": 0.9445,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 0.00045,
62
+ "loss": 0.8578,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 0.0005,
68
+ "loss": 0.9356,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 0.0005499999999999999,
74
+ "loss": 0.8395,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 0.0006000000000000001,
80
+ "loss": 0.9002,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 0.00065,
86
+ "loss": 0.8955,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 0.0006499959204043461,
92
+ "loss": 0.902,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.05,
97
+ "learning_rate": 0.0006499836817198032,
98
+ "loss": 0.8578,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 0.0006499632842536263,
104
+ "loss": 0.9005,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 0.0006499347285178979,
110
+ "loss": 0.8539,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.06,
115
+ "learning_rate": 0.0006498980152295153,
116
+ "loss": 0.8595,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 0.0006498531453101735,
122
+ "loss": 0.8845,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.06,
127
+ "learning_rate": 0.0006498001198863406,
128
+ "loss": 0.8924,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.07,
133
+ "learning_rate": 0.000649738940289231,
134
+ "loss": 0.8365,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.07,
139
+ "learning_rate": 0.0006496696080547707,
140
+ "loss": 0.8462,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.07,
145
+ "learning_rate": 0.0006495921249235596,
146
+ "loss": 0.8528,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.07,
151
+ "learning_rate": 0.0006495064928408277,
152
+ "loss": 0.8159,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.08,
157
+ "learning_rate": 0.0006494127139563859,
158
+ "loss": 0.8245,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.08,
163
+ "learning_rate": 0.000649310790624572,
164
+ "loss": 0.8081,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.08,
169
+ "learning_rate": 0.0006492007254041924,
170
+ "loss": 0.8535,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.09,
175
+ "learning_rate": 0.0006490825210584566,
176
+ "loss": 0.8162,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.09,
181
+ "learning_rate": 0.0006489561805549089,
182
+ "loss": 0.8456,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.09,
187
+ "learning_rate": 0.0006488217070653535,
188
+ "loss": 0.7799,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.1,
193
+ "learning_rate": 0.0006486791039657748,
194
+ "loss": 0.8088,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.1,
199
+ "learning_rate": 0.0006485283748362524,
200
+ "loss": 0.8683,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.1,
205
+ "learning_rate": 0.0006483695234608723,
206
+ "loss": 0.8871,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.11,
211
+ "learning_rate": 0.0006482025538276304,
212
+ "loss": 0.7711,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.11,
217
+ "learning_rate": 0.0006480274701283335,
218
+ "loss": 0.7621,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.11,
223
+ "learning_rate": 0.0006478442767584937,
224
+ "loss": 0.8243,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.12,
229
+ "learning_rate": 0.0006476529783172177,
230
+ "loss": 0.8257,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.12,
235
+ "learning_rate": 0.0006474535796070919,
236
+ "loss": 0.8141,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.12,
241
+ "learning_rate": 0.0006472460856340619,
242
+ "loss": 0.8109,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.12,
247
+ "learning_rate": 0.000647030501607306,
248
+ "loss": 0.7873,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.13,
253
+ "learning_rate": 0.000646806832939105,
254
+ "loss": 0.7386,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.13,
259
+ "learning_rate": 0.0006465750852447068,
260
+ "loss": 0.8636,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.13,
265
+ "learning_rate": 0.0006463352643421846,
266
+ "loss": 0.7357,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.14,
271
+ "learning_rate": 0.0006460873762522906,
272
+ "loss": 0.8142,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.14,
277
+ "learning_rate": 0.0006458314271983063,
278
+ "loss": 0.7275,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.14,
283
+ "learning_rate": 0.0006455674236058847,
284
+ "loss": 0.8029,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.15,
289
+ "learning_rate": 0.00064529537210289,
290
+ "loss": 0.7901,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.15,
295
+ "learning_rate": 0.0006450152795192307,
296
+ "loss": 0.7788,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.15,
301
+ "learning_rate": 0.0006447271528866881,
302
+ "loss": 0.7621,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.16,
307
+ "learning_rate": 0.0006444309994387402,
308
+ "loss": 0.7537,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.16,
313
+ "learning_rate": 0.0006441268266103796,
314
+ "loss": 0.7917,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.16,
319
+ "learning_rate": 0.0006438146420379274,
320
+ "loss": 0.8451,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.17,
325
+ "learning_rate": 0.0006434944535588411,
326
+ "loss": 0.8369,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.17,
331
+ "learning_rate": 0.0006431662692115173,
332
+ "loss": 0.7637,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.17,
337
+ "learning_rate": 0.0006428300972350914,
338
+ "loss": 0.8365,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.17,
343
+ "learning_rate": 0.0006424859460692295,
344
+ "loss": 0.7633,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.18,
349
+ "learning_rate": 0.0006421338243539165,
350
+ "loss": 0.7718,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.18,
355
+ "learning_rate": 0.0006417737409292403,
356
+ "loss": 0.7672,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.18,
361
+ "learning_rate": 0.0006414057048351684,
362
+ "loss": 0.8107,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.19,
367
+ "learning_rate": 0.0006410297253113221,
368
+ "loss": 0.7979,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.19,
373
+ "learning_rate": 0.0006406458117967443,
374
+ "loss": 0.7634,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.19,
379
+ "learning_rate": 0.0006402539739296618,
380
+ "loss": 0.7504,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.2,
385
+ "learning_rate": 0.0006398542215472443,
386
+ "loss": 0.8082,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.2,
391
+ "learning_rate": 0.0006394465646853571,
392
+ "loss": 0.8355,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.2,
397
+ "learning_rate": 0.0006390310135783086,
398
+ "loss": 0.7458,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.21,
403
+ "learning_rate": 0.0006386075786585944,
404
+ "loss": 0.7525,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.21,
409
+ "learning_rate": 0.0006381762705566343,
410
+ "loss": 0.7464,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.21,
415
+ "learning_rate": 0.0006377371001005063,
416
+ "loss": 0.78,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.22,
421
+ "learning_rate": 0.0006372900783156745,
422
+ "loss": 0.7752,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.22,
427
+ "learning_rate": 0.0006368352164247117,
428
+ "loss": 0.7299,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.22,
433
+ "learning_rate": 0.0006363725258470184,
434
+ "loss": 0.7722,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.22,
439
+ "learning_rate": 0.0006359020181985365,
440
+ "loss": 0.8236,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.23,
445
+ "learning_rate": 0.0006354237052914561,
446
+ "loss": 0.7589,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.23,
451
+ "learning_rate": 0.0006349375991339202,
452
+ "loss": 0.7948,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.23,
457
+ "learning_rate": 0.0006344437119297233,
458
+ "loss": 0.7528,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.24,
463
+ "learning_rate": 0.0006339420560780045,
464
+ "loss": 0.7842,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.24,
469
+ "learning_rate": 0.0006334326441729361,
470
+ "loss": 0.7541,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.24,
475
+ "learning_rate": 0.000632915489003408,
476
+ "loss": 0.7425,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.25,
481
+ "learning_rate": 0.0006323906035527062,
482
+ "loss": 0.8168,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.25,
487
+ "learning_rate": 0.0006318580009981871,
488
+ "loss": 0.8074,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.25,
493
+ "learning_rate": 0.0006313176947109465,
494
+ "loss": 0.7679,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.26,
499
+ "learning_rate": 0.0006307696982554838,
500
+ "loss": 0.7465,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.26,
505
+ "learning_rate": 0.0006302140253893622,
506
+ "loss": 0.7073,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.26,
511
+ "learning_rate": 0.0006296506900628619,
512
+ "loss": 0.7687,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.27,
517
+ "learning_rate": 0.0006290797064186315,
518
+ "loss": 0.7578,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.27,
523
+ "learning_rate": 0.0006285010887913319,
524
+ "loss": 0.7494,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.27,
529
+ "learning_rate": 0.0006279148517072765,
530
+ "loss": 0.7326,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.27,
535
+ "learning_rate": 0.000627321009884067,
536
+ "loss": 0.7603,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.28,
541
+ "learning_rate": 0.0006267195782302236,
542
+ "loss": 0.8141,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.28,
547
+ "learning_rate": 0.0006261105718448105,
548
+ "loss": 0.7542,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.28,
553
+ "learning_rate": 0.0006254940060170575,
554
+ "loss": 0.7597,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.29,
559
+ "learning_rate": 0.0006248698962259753,
560
+ "loss": 0.7332,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.29,
565
+ "learning_rate": 0.0006242382581399676,
566
+ "loss": 0.7031,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.29,
571
+ "learning_rate": 0.0006235991076164375,
572
+ "loss": 0.7258,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.3,
577
+ "learning_rate": 0.0006229524607013892,
578
+ "loss": 0.7634,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.3,
583
+ "learning_rate": 0.0006222983336290254,
584
+ "loss": 0.765,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.3,
589
+ "learning_rate": 0.0006216367428213398,
590
+ "loss": 0.7246,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.31,
595
+ "learning_rate": 0.0006209677048877046,
596
+ "loss": 0.7115,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.31,
601
+ "learning_rate": 0.0006202912366244535,
602
+ "loss": 0.6748,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.31,
607
+ "learning_rate": 0.0006196073550144604,
608
+ "loss": 0.6995,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.32,
613
+ "learning_rate": 0.0006189160772267127,
614
+ "loss": 0.7764,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.32,
619
+ "learning_rate": 0.00061821742061588,
620
+ "loss": 0.8628,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.32,
625
+ "learning_rate": 0.0006175114027218794,
626
+ "loss": 0.7266,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.32,
631
+ "learning_rate": 0.0006167980412694342,
632
+ "loss": 0.7557,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.33,
637
+ "learning_rate": 0.0006160773541676288,
638
+ "loss": 0.7518,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.33,
643
+ "learning_rate": 0.0006153493595094602,
644
+ "loss": 0.7589,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.33,
649
+ "learning_rate": 0.000614614075571383,
650
+ "loss": 0.7506,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.34,
655
+ "learning_rate": 0.0006138715208128501,
656
+ "loss": 0.6617,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.34,
661
+ "learning_rate": 0.0006131217138758505,
662
+ "loss": 0.7396,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.34,
667
+ "learning_rate": 0.0006123646735844401,
668
+ "loss": 0.7666,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.35,
673
+ "learning_rate": 0.00061160041894427,
674
+ "loss": 0.7555,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.35,
679
+ "learning_rate": 0.0006108289691421089,
680
+ "loss": 0.7301,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.35,
685
+ "learning_rate": 0.0006100503435453614,
686
+ "loss": 0.7364,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.36,
691
+ "learning_rate": 0.0006092645617015822,
692
+ "loss": 0.7461,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.36,
697
+ "learning_rate": 0.0006084716433379844,
698
+ "loss": 0.8086,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.36,
703
+ "learning_rate": 0.0006076716083609456,
704
+ "loss": 0.7577,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.36,
709
+ "learning_rate": 0.0006068644768555068,
710
+ "loss": 0.7094,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.37,
715
+ "learning_rate": 0.0006060502690848696,
716
+ "loss": 0.726,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.37,
721
+ "learning_rate": 0.0006052290054898859,
722
+ "loss": 0.7243,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.37,
727
+ "learning_rate": 0.0006044007066885458,
728
+ "loss": 0.7119,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.38,
733
+ "learning_rate": 0.0006035653934754598,
734
+ "loss": 0.7049,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.38,
739
+ "learning_rate": 0.0006027230868213366,
740
+ "loss": 0.7424,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.38,
745
+ "learning_rate": 0.0006018738078724563,
746
+ "loss": 0.7271,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.39,
751
+ "learning_rate": 0.0006010175779501405,
752
+ "loss": 0.7996,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.39,
757
+ "learning_rate": 0.0006001544185502158,
758
+ "loss": 0.7468,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.39,
763
+ "learning_rate": 0.0005992843513424754,
764
+ "loss": 0.7513,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.4,
769
+ "learning_rate": 0.0005984073981701338,
770
+ "loss": 0.7461,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.4,
775
+ "learning_rate": 0.0005975235810492794,
776
+ "loss": 0.6821,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.4,
781
+ "learning_rate": 0.0005966329221683215,
782
+ "loss": 0.7314,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.41,
787
+ "learning_rate": 0.0005957354438874327,
788
+ "loss": 0.714,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.41,
793
+ "learning_rate": 0.0005948311687379884,
794
+ "loss": 0.7339,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.41,
799
+ "learning_rate": 0.000593920119422001,
800
+ "loss": 0.7021,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.41,
805
+ "learning_rate": 0.0005930023188115492,
806
+ "loss": 0.7228,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.42,
811
+ "learning_rate": 0.0005920777899482046,
812
+ "loss": 0.7107,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.42,
817
+ "learning_rate": 0.0005911465560424532,
818
+ "loss": 0.659,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.42,
823
+ "learning_rate": 0.0005902086404731118,
824
+ "loss": 0.7028,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.43,
829
+ "learning_rate": 0.0005892640667867423,
830
+ "loss": 0.7275,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.43,
835
+ "learning_rate": 0.00058831285869706,
836
+ "loss": 0.6889,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.43,
841
+ "learning_rate": 0.0005873550400843378,
842
+ "loss": 0.7891,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.44,
847
+ "learning_rate": 0.0005863906349948074,
848
+ "loss": 0.7904,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.44,
853
+ "learning_rate": 0.0005854196676400555,
854
+ "loss": 0.6674,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.44,
859
+ "learning_rate": 0.0005844421623964157,
860
+ "loss": 0.7352,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.45,
865
+ "learning_rate": 0.0005834581438043563,
866
+ "loss": 0.6965,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.45,
871
+ "learning_rate": 0.000582467636567865,
872
+ "loss": 0.7238,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.45,
877
+ "learning_rate": 0.0005814706655538279,
878
+ "loss": 0.7064,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.46,
883
+ "learning_rate": 0.0005804672557914059,
884
+ "loss": 0.6984,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.46,
889
+ "learning_rate": 0.0005794574324714057,
890
+ "loss": 0.7594,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.46,
895
+ "learning_rate": 0.0005784412209456479,
896
+ "loss": 0.6884,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.46,
901
+ "learning_rate": 0.00057741864672633,
902
+ "loss": 0.7141,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.47,
907
+ "learning_rate": 0.0005763897354853866,
908
+ "loss": 0.705,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.47,
913
+ "learning_rate": 0.0005753545130538441,
914
+ "loss": 0.7613,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.47,
919
+ "learning_rate": 0.0005743130054211732,
920
+ "loss": 0.736,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.48,
925
+ "learning_rate": 0.0005732652387346351,
926
+ "loss": 0.6814,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.48,
931
+ "learning_rate": 0.0005722112392986265,
932
+ "loss": 0.7002,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.48,
937
+ "learning_rate": 0.0005711510335740182,
938
+ "loss": 0.7023,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.49,
943
+ "learning_rate": 0.0005700846481774913,
944
+ "loss": 0.7617,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.49,
949
+ "learning_rate": 0.0005690121098808687,
950
+ "loss": 0.7079,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.49,
955
+ "learning_rate": 0.0005679334456104429,
956
+ "loss": 0.7614,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.5,
961
+ "learning_rate": 0.000566848682446301,
962
+ "loss": 0.6786,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.5,
967
+ "learning_rate": 0.0005657578476216432,
968
+ "loss": 0.6773,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.5,
973
+ "learning_rate": 0.0005646609685221003,
974
+ "loss": 0.7085,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.51,
979
+ "learning_rate": 0.0005635580726850462,
980
+ "loss": 0.7167,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.51,
985
+ "learning_rate": 0.0005624491877989055,
986
+ "loss": 0.7192,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.51,
991
+ "learning_rate": 0.0005613343417024599,
992
+ "loss": 0.6761,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.51,
997
+ "learning_rate": 0.0005602135623841478,
998
+ "loss": 0.7508,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.52,
1003
+ "learning_rate": 0.0005590868779813627,
1004
+ "loss": 0.6978,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.52,
1009
+ "learning_rate": 0.0005579543167797467,
1010
+ "loss": 0.7459,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.52,
1015
+ "learning_rate": 0.0005568159072124794,
1016
+ "loss": 0.7438,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.53,
1021
+ "learning_rate": 0.0005556716778595654,
1022
+ "loss": 0.7073,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.53,
1027
+ "learning_rate": 0.0005545216574471164,
1028
+ "loss": 0.6385,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.53,
1033
+ "learning_rate": 0.0005533658748466291,
1034
+ "loss": 0.6993,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.54,
1039
+ "learning_rate": 0.0005522043590742615,
1040
+ "loss": 0.7258,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.54,
1045
+ "learning_rate": 0.0005510371392901041,
1046
+ "loss": 0.7405,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.54,
1051
+ "learning_rate": 0.0005498642447974479,
1052
+ "loss": 0.7525,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.55,
1057
+ "learning_rate": 0.0005486857050420481,
1058
+ "loss": 0.6639,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.55,
1063
+ "learning_rate": 0.0005475015496113861,
1064
+ "loss": 0.7415,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.55,
1069
+ "learning_rate": 0.0005463118082339253,
1070
+ "loss": 0.7816,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.56,
1075
+ "learning_rate": 0.0005451165107783659,
1076
+ "loss": 0.711,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.56,
1081
+ "learning_rate": 0.0005439156872528941,
1082
+ "loss": 0.7138,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.56,
1087
+ "learning_rate": 0.0005427093678044299,
1088
+ "loss": 0.7069,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.56,
1093
+ "learning_rate": 0.0005414975827178688,
1094
+ "loss": 0.7553,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.57,
1099
+ "learning_rate": 0.000540280362415323,
1100
+ "loss": 0.7045,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.57,
1105
+ "learning_rate": 0.0005390577374553561,
1106
+ "loss": 0.7011,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.57,
1111
+ "learning_rate": 0.0005378297385322177,
1112
+ "loss": 0.7441,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.58,
1117
+ "learning_rate": 0.0005365963964750707,
1118
+ "loss": 0.6797,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.58,
1123
+ "learning_rate": 0.0005353577422472196,
1124
+ "loss": 0.6901,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.58,
1129
+ "learning_rate": 0.0005341138069453313,
1130
+ "loss": 0.7136,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.59,
1135
+ "learning_rate": 0.0005328646217986553,
1136
+ "loss": 0.7459,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.59,
1141
+ "learning_rate": 0.0005316102181682396,
1142
+ "loss": 0.7064,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.59,
1147
+ "learning_rate": 0.0005303506275461433,
1148
+ "loss": 0.6705,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.6,
1153
+ "learning_rate": 0.0005290858815546459,
1154
+ "loss": 0.7008,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.6,
1159
+ "learning_rate": 0.0005278160119454536,
1160
+ "loss": 0.7538,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.6,
1165
+ "learning_rate": 0.0005265410505989021,
1166
+ "loss": 0.7726,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.61,
1171
+ "learning_rate": 0.000525261029523156,
1172
+ "loss": 0.7532,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.61,
1177
+ "learning_rate": 0.0005239759808534055,
1178
+ "loss": 0.6978,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.61,
1183
+ "learning_rate": 0.0005226859368510599,
1184
+ "loss": 0.7182,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.61,
1189
+ "learning_rate": 0.0005213909299029368,
1190
+ "loss": 0.6776,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.62,
1195
+ "learning_rate": 0.0005200909925204501,
1196
+ "loss": 0.7447,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.62,
1201
+ "learning_rate": 0.0005187861573387928,
1202
+ "loss": 0.7298,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.62,
1207
+ "learning_rate": 0.0005174764571161185,
1208
+ "loss": 0.6833,
1209
+ "step": 200
1210
+ }
1211
+ ],
1212
+ "logging_steps": 1,
1213
+ "max_steps": 640,
1214
+ "num_input_tokens_seen": 0,
1215
+ "num_train_epochs": 2,
1216
+ "save_steps": 50,
1217
+ "total_flos": 5.1873840573382656e+17,
1218
+ "train_batch_size": 4,
1219
+ "trial_name": null,
1220
+ "trial_params": null
1221
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d688198fe54ccac5c0a98d11fb9e7224690ace94f7e483ba1d16db91cf33a5c4
3
+ size 4664
checkpoint-250/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: NousResearch/Llama-2-13b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-250/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "NousResearch/Llama-2-13b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "o_proj",
23
+ "up_proj",
24
+ "k_proj",
25
+ "gate_proj",
26
+ "down_proj",
27
+ "v_proj",
28
+ "q_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
checkpoint-250/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b266f98b7032e85090b649c4016a474f977a2b7e4bd41b131d49b149a6f8ebf
3
+ size 2002857080
checkpoint-250/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:746320d3c6d753667e711f1a8c927057b1d73e27b50378852b05288fcfd12a82
3
+ size 1004004436
checkpoint-250/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4c917636c7a58af68a29056522a757e9f9b99005b776641aa157c536967817d
3
+ size 14244
checkpoint-250/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c43bba66eac938f38b29c075c8808a28bd8f08375d129a8f697b229d8c469183
3
+ size 1064
checkpoint-250/trainer_state.json ADDED
@@ -0,0 +1,1521 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.7797270955165692,
5
+ "eval_steps": 500,
6
+ "global_step": 250,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5e-05,
14
+ "loss": 1.0506,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 0.0001,
20
+ "loss": 0.9988,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.00015000000000000001,
26
+ "loss": 0.9783,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.0002,
32
+ "loss": 0.9849,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 0.00025,
38
+ "loss": 1.0159,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 0.00030000000000000003,
44
+ "loss": 0.9847,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.00034999999999999994,
50
+ "loss": 0.9101,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.0004,
56
+ "loss": 0.9445,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 0.00045,
62
+ "loss": 0.8578,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 0.0005,
68
+ "loss": 0.9356,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 0.0005499999999999999,
74
+ "loss": 0.8395,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 0.0006000000000000001,
80
+ "loss": 0.9002,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 0.00065,
86
+ "loss": 0.8955,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 0.0006499959204043461,
92
+ "loss": 0.902,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.05,
97
+ "learning_rate": 0.0006499836817198032,
98
+ "loss": 0.8578,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 0.0006499632842536263,
104
+ "loss": 0.9005,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 0.0006499347285178979,
110
+ "loss": 0.8539,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.06,
115
+ "learning_rate": 0.0006498980152295153,
116
+ "loss": 0.8595,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 0.0006498531453101735,
122
+ "loss": 0.8845,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.06,
127
+ "learning_rate": 0.0006498001198863406,
128
+ "loss": 0.8924,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.07,
133
+ "learning_rate": 0.000649738940289231,
134
+ "loss": 0.8365,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.07,
139
+ "learning_rate": 0.0006496696080547707,
140
+ "loss": 0.8462,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.07,
145
+ "learning_rate": 0.0006495921249235596,
146
+ "loss": 0.8528,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.07,
151
+ "learning_rate": 0.0006495064928408277,
152
+ "loss": 0.8159,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.08,
157
+ "learning_rate": 0.0006494127139563859,
158
+ "loss": 0.8245,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.08,
163
+ "learning_rate": 0.000649310790624572,
164
+ "loss": 0.8081,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.08,
169
+ "learning_rate": 0.0006492007254041924,
170
+ "loss": 0.8535,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.09,
175
+ "learning_rate": 0.0006490825210584566,
176
+ "loss": 0.8162,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.09,
181
+ "learning_rate": 0.0006489561805549089,
182
+ "loss": 0.8456,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.09,
187
+ "learning_rate": 0.0006488217070653535,
188
+ "loss": 0.7799,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.1,
193
+ "learning_rate": 0.0006486791039657748,
194
+ "loss": 0.8088,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.1,
199
+ "learning_rate": 0.0006485283748362524,
200
+ "loss": 0.8683,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.1,
205
+ "learning_rate": 0.0006483695234608723,
206
+ "loss": 0.8871,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.11,
211
+ "learning_rate": 0.0006482025538276304,
212
+ "loss": 0.7711,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.11,
217
+ "learning_rate": 0.0006480274701283335,
218
+ "loss": 0.7621,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.11,
223
+ "learning_rate": 0.0006478442767584937,
224
+ "loss": 0.8243,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.12,
229
+ "learning_rate": 0.0006476529783172177,
230
+ "loss": 0.8257,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.12,
235
+ "learning_rate": 0.0006474535796070919,
236
+ "loss": 0.8141,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.12,
241
+ "learning_rate": 0.0006472460856340619,
242
+ "loss": 0.8109,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.12,
247
+ "learning_rate": 0.000647030501607306,
248
+ "loss": 0.7873,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.13,
253
+ "learning_rate": 0.000646806832939105,
254
+ "loss": 0.7386,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.13,
259
+ "learning_rate": 0.0006465750852447068,
260
+ "loss": 0.8636,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.13,
265
+ "learning_rate": 0.0006463352643421846,
266
+ "loss": 0.7357,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.14,
271
+ "learning_rate": 0.0006460873762522906,
272
+ "loss": 0.8142,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.14,
277
+ "learning_rate": 0.0006458314271983063,
278
+ "loss": 0.7275,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.14,
283
+ "learning_rate": 0.0006455674236058847,
284
+ "loss": 0.8029,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.15,
289
+ "learning_rate": 0.00064529537210289,
290
+ "loss": 0.7901,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.15,
295
+ "learning_rate": 0.0006450152795192307,
296
+ "loss": 0.7788,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.15,
301
+ "learning_rate": 0.0006447271528866881,
302
+ "loss": 0.7621,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.16,
307
+ "learning_rate": 0.0006444309994387402,
308
+ "loss": 0.7537,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.16,
313
+ "learning_rate": 0.0006441268266103796,
314
+ "loss": 0.7917,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.16,
319
+ "learning_rate": 0.0006438146420379274,
320
+ "loss": 0.8451,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.17,
325
+ "learning_rate": 0.0006434944535588411,
326
+ "loss": 0.8369,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.17,
331
+ "learning_rate": 0.0006431662692115173,
332
+ "loss": 0.7637,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.17,
337
+ "learning_rate": 0.0006428300972350914,
338
+ "loss": 0.8365,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.17,
343
+ "learning_rate": 0.0006424859460692295,
344
+ "loss": 0.7633,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.18,
349
+ "learning_rate": 0.0006421338243539165,
350
+ "loss": 0.7718,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.18,
355
+ "learning_rate": 0.0006417737409292403,
356
+ "loss": 0.7672,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.18,
361
+ "learning_rate": 0.0006414057048351684,
362
+ "loss": 0.8107,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.19,
367
+ "learning_rate": 0.0006410297253113221,
368
+ "loss": 0.7979,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.19,
373
+ "learning_rate": 0.0006406458117967443,
374
+ "loss": 0.7634,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.19,
379
+ "learning_rate": 0.0006402539739296618,
380
+ "loss": 0.7504,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.2,
385
+ "learning_rate": 0.0006398542215472443,
386
+ "loss": 0.8082,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.2,
391
+ "learning_rate": 0.0006394465646853571,
392
+ "loss": 0.8355,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.2,
397
+ "learning_rate": 0.0006390310135783086,
398
+ "loss": 0.7458,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.21,
403
+ "learning_rate": 0.0006386075786585944,
404
+ "loss": 0.7525,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.21,
409
+ "learning_rate": 0.0006381762705566343,
410
+ "loss": 0.7464,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.21,
415
+ "learning_rate": 0.0006377371001005063,
416
+ "loss": 0.78,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.22,
421
+ "learning_rate": 0.0006372900783156745,
422
+ "loss": 0.7752,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.22,
427
+ "learning_rate": 0.0006368352164247117,
428
+ "loss": 0.7299,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.22,
433
+ "learning_rate": 0.0006363725258470184,
434
+ "loss": 0.7722,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.22,
439
+ "learning_rate": 0.0006359020181985365,
440
+ "loss": 0.8236,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.23,
445
+ "learning_rate": 0.0006354237052914561,
446
+ "loss": 0.7589,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.23,
451
+ "learning_rate": 0.0006349375991339202,
452
+ "loss": 0.7948,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.23,
457
+ "learning_rate": 0.0006344437119297233,
458
+ "loss": 0.7528,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.24,
463
+ "learning_rate": 0.0006339420560780045,
464
+ "loss": 0.7842,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.24,
469
+ "learning_rate": 0.0006334326441729361,
470
+ "loss": 0.7541,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.24,
475
+ "learning_rate": 0.000632915489003408,
476
+ "loss": 0.7425,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.25,
481
+ "learning_rate": 0.0006323906035527062,
482
+ "loss": 0.8168,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.25,
487
+ "learning_rate": 0.0006318580009981871,
488
+ "loss": 0.8074,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.25,
493
+ "learning_rate": 0.0006313176947109465,
494
+ "loss": 0.7679,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.26,
499
+ "learning_rate": 0.0006307696982554838,
500
+ "loss": 0.7465,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.26,
505
+ "learning_rate": 0.0006302140253893622,
506
+ "loss": 0.7073,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.26,
511
+ "learning_rate": 0.0006296506900628619,
512
+ "loss": 0.7687,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.27,
517
+ "learning_rate": 0.0006290797064186315,
518
+ "loss": 0.7578,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.27,
523
+ "learning_rate": 0.0006285010887913319,
524
+ "loss": 0.7494,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.27,
529
+ "learning_rate": 0.0006279148517072765,
530
+ "loss": 0.7326,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.27,
535
+ "learning_rate": 0.000627321009884067,
536
+ "loss": 0.7603,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.28,
541
+ "learning_rate": 0.0006267195782302236,
542
+ "loss": 0.8141,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.28,
547
+ "learning_rate": 0.0006261105718448105,
548
+ "loss": 0.7542,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.28,
553
+ "learning_rate": 0.0006254940060170575,
554
+ "loss": 0.7597,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.29,
559
+ "learning_rate": 0.0006248698962259753,
560
+ "loss": 0.7332,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.29,
565
+ "learning_rate": 0.0006242382581399676,
566
+ "loss": 0.7031,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.29,
571
+ "learning_rate": 0.0006235991076164375,
572
+ "loss": 0.7258,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.3,
577
+ "learning_rate": 0.0006229524607013892,
578
+ "loss": 0.7634,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.3,
583
+ "learning_rate": 0.0006222983336290254,
584
+ "loss": 0.765,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.3,
589
+ "learning_rate": 0.0006216367428213398,
590
+ "loss": 0.7246,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.31,
595
+ "learning_rate": 0.0006209677048877046,
596
+ "loss": 0.7115,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.31,
601
+ "learning_rate": 0.0006202912366244535,
602
+ "loss": 0.6748,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.31,
607
+ "learning_rate": 0.0006196073550144604,
608
+ "loss": 0.6995,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.32,
613
+ "learning_rate": 0.0006189160772267127,
614
+ "loss": 0.7764,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.32,
619
+ "learning_rate": 0.00061821742061588,
620
+ "loss": 0.8628,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.32,
625
+ "learning_rate": 0.0006175114027218794,
626
+ "loss": 0.7266,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.32,
631
+ "learning_rate": 0.0006167980412694342,
632
+ "loss": 0.7557,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.33,
637
+ "learning_rate": 0.0006160773541676288,
638
+ "loss": 0.7518,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.33,
643
+ "learning_rate": 0.0006153493595094602,
644
+ "loss": 0.7589,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.33,
649
+ "learning_rate": 0.000614614075571383,
650
+ "loss": 0.7506,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.34,
655
+ "learning_rate": 0.0006138715208128501,
656
+ "loss": 0.6617,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.34,
661
+ "learning_rate": 0.0006131217138758505,
662
+ "loss": 0.7396,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.34,
667
+ "learning_rate": 0.0006123646735844401,
668
+ "loss": 0.7666,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.35,
673
+ "learning_rate": 0.00061160041894427,
674
+ "loss": 0.7555,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.35,
679
+ "learning_rate": 0.0006108289691421089,
680
+ "loss": 0.7301,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.35,
685
+ "learning_rate": 0.0006100503435453614,
686
+ "loss": 0.7364,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.36,
691
+ "learning_rate": 0.0006092645617015822,
692
+ "loss": 0.7461,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.36,
697
+ "learning_rate": 0.0006084716433379844,
698
+ "loss": 0.8086,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.36,
703
+ "learning_rate": 0.0006076716083609456,
704
+ "loss": 0.7577,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.36,
709
+ "learning_rate": 0.0006068644768555068,
710
+ "loss": 0.7094,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.37,
715
+ "learning_rate": 0.0006060502690848696,
716
+ "loss": 0.726,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.37,
721
+ "learning_rate": 0.0006052290054898859,
722
+ "loss": 0.7243,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.37,
727
+ "learning_rate": 0.0006044007066885458,
728
+ "loss": 0.7119,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.38,
733
+ "learning_rate": 0.0006035653934754598,
734
+ "loss": 0.7049,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.38,
739
+ "learning_rate": 0.0006027230868213366,
740
+ "loss": 0.7424,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.38,
745
+ "learning_rate": 0.0006018738078724563,
746
+ "loss": 0.7271,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.39,
751
+ "learning_rate": 0.0006010175779501405,
752
+ "loss": 0.7996,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.39,
757
+ "learning_rate": 0.0006001544185502158,
758
+ "loss": 0.7468,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.39,
763
+ "learning_rate": 0.0005992843513424754,
764
+ "loss": 0.7513,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.4,
769
+ "learning_rate": 0.0005984073981701338,
770
+ "loss": 0.7461,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.4,
775
+ "learning_rate": 0.0005975235810492794,
776
+ "loss": 0.6821,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.4,
781
+ "learning_rate": 0.0005966329221683215,
782
+ "loss": 0.7314,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.41,
787
+ "learning_rate": 0.0005957354438874327,
788
+ "loss": 0.714,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.41,
793
+ "learning_rate": 0.0005948311687379884,
794
+ "loss": 0.7339,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.41,
799
+ "learning_rate": 0.000593920119422001,
800
+ "loss": 0.7021,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.41,
805
+ "learning_rate": 0.0005930023188115492,
806
+ "loss": 0.7228,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.42,
811
+ "learning_rate": 0.0005920777899482046,
812
+ "loss": 0.7107,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.42,
817
+ "learning_rate": 0.0005911465560424532,
818
+ "loss": 0.659,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.42,
823
+ "learning_rate": 0.0005902086404731118,
824
+ "loss": 0.7028,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.43,
829
+ "learning_rate": 0.0005892640667867423,
830
+ "loss": 0.7275,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.43,
835
+ "learning_rate": 0.00058831285869706,
836
+ "loss": 0.6889,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.43,
841
+ "learning_rate": 0.0005873550400843378,
842
+ "loss": 0.7891,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.44,
847
+ "learning_rate": 0.0005863906349948074,
848
+ "loss": 0.7904,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.44,
853
+ "learning_rate": 0.0005854196676400555,
854
+ "loss": 0.6674,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.44,
859
+ "learning_rate": 0.0005844421623964157,
860
+ "loss": 0.7352,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.45,
865
+ "learning_rate": 0.0005834581438043563,
866
+ "loss": 0.6965,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.45,
871
+ "learning_rate": 0.000582467636567865,
872
+ "loss": 0.7238,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.45,
877
+ "learning_rate": 0.0005814706655538279,
878
+ "loss": 0.7064,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.46,
883
+ "learning_rate": 0.0005804672557914059,
884
+ "loss": 0.6984,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.46,
889
+ "learning_rate": 0.0005794574324714057,
890
+ "loss": 0.7594,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.46,
895
+ "learning_rate": 0.0005784412209456479,
896
+ "loss": 0.6884,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.46,
901
+ "learning_rate": 0.00057741864672633,
902
+ "loss": 0.7141,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.47,
907
+ "learning_rate": 0.0005763897354853866,
908
+ "loss": 0.705,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.47,
913
+ "learning_rate": 0.0005753545130538441,
914
+ "loss": 0.7613,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.47,
919
+ "learning_rate": 0.0005743130054211732,
920
+ "loss": 0.736,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.48,
925
+ "learning_rate": 0.0005732652387346351,
926
+ "loss": 0.6814,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.48,
931
+ "learning_rate": 0.0005722112392986265,
932
+ "loss": 0.7002,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.48,
937
+ "learning_rate": 0.0005711510335740182,
938
+ "loss": 0.7023,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.49,
943
+ "learning_rate": 0.0005700846481774913,
944
+ "loss": 0.7617,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.49,
949
+ "learning_rate": 0.0005690121098808687,
950
+ "loss": 0.7079,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.49,
955
+ "learning_rate": 0.0005679334456104429,
956
+ "loss": 0.7614,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.5,
961
+ "learning_rate": 0.000566848682446301,
962
+ "loss": 0.6786,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.5,
967
+ "learning_rate": 0.0005657578476216432,
968
+ "loss": 0.6773,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.5,
973
+ "learning_rate": 0.0005646609685221003,
974
+ "loss": 0.7085,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.51,
979
+ "learning_rate": 0.0005635580726850462,
980
+ "loss": 0.7167,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.51,
985
+ "learning_rate": 0.0005624491877989055,
986
+ "loss": 0.7192,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.51,
991
+ "learning_rate": 0.0005613343417024599,
992
+ "loss": 0.6761,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.51,
997
+ "learning_rate": 0.0005602135623841478,
998
+ "loss": 0.7508,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.52,
1003
+ "learning_rate": 0.0005590868779813627,
1004
+ "loss": 0.6978,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.52,
1009
+ "learning_rate": 0.0005579543167797467,
1010
+ "loss": 0.7459,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.52,
1015
+ "learning_rate": 0.0005568159072124794,
1016
+ "loss": 0.7438,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.53,
1021
+ "learning_rate": 0.0005556716778595654,
1022
+ "loss": 0.7073,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.53,
1027
+ "learning_rate": 0.0005545216574471164,
1028
+ "loss": 0.6385,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.53,
1033
+ "learning_rate": 0.0005533658748466291,
1034
+ "loss": 0.6993,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.54,
1039
+ "learning_rate": 0.0005522043590742615,
1040
+ "loss": 0.7258,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.54,
1045
+ "learning_rate": 0.0005510371392901041,
1046
+ "loss": 0.7405,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.54,
1051
+ "learning_rate": 0.0005498642447974479,
1052
+ "loss": 0.7525,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.55,
1057
+ "learning_rate": 0.0005486857050420481,
1058
+ "loss": 0.6639,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.55,
1063
+ "learning_rate": 0.0005475015496113861,
1064
+ "loss": 0.7415,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.55,
1069
+ "learning_rate": 0.0005463118082339253,
1070
+ "loss": 0.7816,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.56,
1075
+ "learning_rate": 0.0005451165107783659,
1076
+ "loss": 0.711,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.56,
1081
+ "learning_rate": 0.0005439156872528941,
1082
+ "loss": 0.7138,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.56,
1087
+ "learning_rate": 0.0005427093678044299,
1088
+ "loss": 0.7069,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.56,
1093
+ "learning_rate": 0.0005414975827178688,
1094
+ "loss": 0.7553,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.57,
1099
+ "learning_rate": 0.000540280362415323,
1100
+ "loss": 0.7045,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.57,
1105
+ "learning_rate": 0.0005390577374553561,
1106
+ "loss": 0.7011,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.57,
1111
+ "learning_rate": 0.0005378297385322177,
1112
+ "loss": 0.7441,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.58,
1117
+ "learning_rate": 0.0005365963964750707,
1118
+ "loss": 0.6797,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.58,
1123
+ "learning_rate": 0.0005353577422472196,
1124
+ "loss": 0.6901,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.58,
1129
+ "learning_rate": 0.0005341138069453313,
1130
+ "loss": 0.7136,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.59,
1135
+ "learning_rate": 0.0005328646217986553,
1136
+ "loss": 0.7459,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.59,
1141
+ "learning_rate": 0.0005316102181682396,
1142
+ "loss": 0.7064,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.59,
1147
+ "learning_rate": 0.0005303506275461433,
1148
+ "loss": 0.6705,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.6,
1153
+ "learning_rate": 0.0005290858815546459,
1154
+ "loss": 0.7008,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.6,
1159
+ "learning_rate": 0.0005278160119454536,
1160
+ "loss": 0.7538,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.6,
1165
+ "learning_rate": 0.0005265410505989021,
1166
+ "loss": 0.7726,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.61,
1171
+ "learning_rate": 0.000525261029523156,
1172
+ "loss": 0.7532,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.61,
1177
+ "learning_rate": 0.0005239759808534055,
1178
+ "loss": 0.6978,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.61,
1183
+ "learning_rate": 0.0005226859368510599,
1184
+ "loss": 0.7182,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.61,
1189
+ "learning_rate": 0.0005213909299029368,
1190
+ "loss": 0.6776,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.62,
1195
+ "learning_rate": 0.0005200909925204501,
1196
+ "loss": 0.7447,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.62,
1201
+ "learning_rate": 0.0005187861573387928,
1202
+ "loss": 0.7298,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.62,
1207
+ "learning_rate": 0.0005174764571161185,
1208
+ "loss": 0.6833,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.63,
1213
+ "learning_rate": 0.0005161619247327185,
1214
+ "loss": 0.7518,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.63,
1219
+ "learning_rate": 0.0005148425931901961,
1220
+ "loss": 0.7429,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.63,
1225
+ "learning_rate": 0.0005135184956106394,
1226
+ "loss": 0.763,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.64,
1231
+ "learning_rate": 0.000512189665235788,
1232
+ "loss": 0.7682,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.64,
1237
+ "learning_rate": 0.0005108561354261996,
1238
+ "loss": 0.7063,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.64,
1243
+ "learning_rate": 0.0005095179396604121,
1244
+ "loss": 0.6956,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.65,
1249
+ "learning_rate": 0.0005081751115341034,
1250
+ "loss": 0.7434,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.65,
1255
+ "learning_rate": 0.0005068276847592474,
1256
+ "loss": 0.6673,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.65,
1261
+ "learning_rate": 0.0005054756931632682,
1262
+ "loss": 0.6448,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.65,
1267
+ "learning_rate": 0.0005041191706881909,
1268
+ "loss": 0.7095,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.66,
1273
+ "learning_rate": 0.0005027581513897888,
1274
+ "loss": 0.673,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.66,
1279
+ "learning_rate": 0.000501392669436729,
1280
+ "loss": 0.6363,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.66,
1285
+ "learning_rate": 0.0005000227591097145,
1286
+ "loss": 0.6711,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.67,
1291
+ "learning_rate": 0.0004986484548006237,
1292
+ "loss": 0.6375,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.67,
1297
+ "learning_rate": 0.0004972697910116468,
1298
+ "loss": 0.7466,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.67,
1303
+ "learning_rate": 0.0004958868023544192,
1304
+ "loss": 0.7147,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.68,
1309
+ "learning_rate": 0.0004944995235491534,
1310
+ "loss": 0.714,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.68,
1315
+ "learning_rate": 0.0004931079894237669,
1316
+ "loss": 0.7377,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.68,
1321
+ "learning_rate": 0.0004917122349130078,
1322
+ "loss": 0.7087,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.69,
1327
+ "learning_rate": 0.000490312295057578,
1328
+ "loss": 0.6716,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.69,
1333
+ "learning_rate": 0.0004889082050032529,
1334
+ "loss": 0.7298,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.69,
1339
+ "learning_rate": 0.0004875,
1340
+ "loss": 0.6557,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.7,
1345
+ "learning_rate": 0.0004860877154010932,
1346
+ "loss": 0.7042,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.7,
1351
+ "learning_rate": 0.00048467138666222534,
1352
+ "loss": 0.6617,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.7,
1357
+ "learning_rate": 0.00048325104934061853,
1358
+ "loss": 0.7019,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.7,
1363
+ "learning_rate": 0.00048182673909413103,
1364
+ "loss": 0.6756,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.71,
1369
+ "learning_rate": 0.00048039849168036205,
1370
+ "loss": 0.709,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.71,
1375
+ "learning_rate": 0.00047896634295575434,
1376
+ "loss": 0.7434,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.71,
1381
+ "learning_rate": 0.00047753032887469385,
1382
+ "loss": 0.7533,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.72,
1387
+ "learning_rate": 0.0004760904854886072,
1388
+ "loss": 0.7019,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.72,
1393
+ "learning_rate": 0.0004746468489450562,
1394
+ "loss": 0.6852,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.72,
1399
+ "learning_rate": 0.0004731994554868307,
1400
+ "loss": 0.7228,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.73,
1405
+ "learning_rate": 0.000471748341451039,
1406
+ "loss": 0.7513,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.73,
1411
+ "learning_rate": 0.0004702935432681949,
1412
+ "loss": 0.6896,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.73,
1417
+ "learning_rate": 0.0004688350974613038,
1418
+ "loss": 0.6815,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.74,
1423
+ "learning_rate": 0.0004673730406449449,
1424
+ "loss": 0.7682,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.74,
1429
+ "learning_rate": 0.00046590740952435323,
1430
+ "loss": 0.7025,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.74,
1435
+ "learning_rate": 0.0004644382408944968,
1436
+ "loss": 0.6662,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.75,
1441
+ "learning_rate": 0.00046296557163915395,
1442
+ "loss": 0.7541,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.75,
1447
+ "learning_rate": 0.0004614894387299867,
1448
+ "loss": 0.7336,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.75,
1453
+ "learning_rate": 0.0004600098792256131,
1454
+ "loss": 0.6618,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.75,
1459
+ "learning_rate": 0.0004585269302706762,
1460
+ "loss": 0.6729,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.76,
1465
+ "learning_rate": 0.0004570406290949121,
1466
+ "loss": 0.7327,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.76,
1471
+ "learning_rate": 0.0004555510130122151,
1472
+ "loss": 0.6778,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.76,
1477
+ "learning_rate": 0.0004540581194197008,
1478
+ "loss": 0.6219,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.77,
1483
+ "learning_rate": 0.00045256198579676755,
1484
+ "loss": 0.6984,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.77,
1489
+ "learning_rate": 0.000451062649704155,
1490
+ "loss": 0.637,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.77,
1495
+ "learning_rate": 0.000449560148783002,
1496
+ "loss": 0.658,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.78,
1501
+ "learning_rate": 0.0004480545207539004,
1502
+ "loss": 0.7305,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.78,
1507
+ "learning_rate": 0.0004465458034159491,
1508
+ "loss": 0.6788,
1509
+ "step": 250
1510
+ }
1511
+ ],
1512
+ "logging_steps": 1,
1513
+ "max_steps": 640,
1514
+ "num_input_tokens_seen": 0,
1515
+ "num_train_epochs": 2,
1516
+ "save_steps": 50,
1517
+ "total_flos": 6.485217104687923e+17,
1518
+ "train_batch_size": 4,
1519
+ "trial_name": null,
1520
+ "trial_params": null
1521
+ }
checkpoint-250/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d688198fe54ccac5c0a98d11fb9e7224690ace94f7e483ba1d16db91cf33a5c4
3
+ size 4664
checkpoint-300/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: NousResearch/Llama-2-13b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-300/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "NousResearch/Llama-2-13b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "o_proj",
23
+ "up_proj",
24
+ "k_proj",
25
+ "gate_proj",
26
+ "down_proj",
27
+ "v_proj",
28
+ "q_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
checkpoint-300/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2ba4889ddd334e8b80509f15d40f074b9dfaef2866a04f275eed814dcee579b
3
+ size 2002857080
checkpoint-300/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1105c7c916d0b57c89e82154788da9604d0e8ab6fbaff824e7ab9009a32fdb6
3
+ size 1004005012
checkpoint-300/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4c917636c7a58af68a29056522a757e9f9b99005b776641aa157c536967817d
3
+ size 14244
checkpoint-300/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ec9001d99362d99da8638538a872bd8142681e341e7c9813a2a8768e2c11b81
3
+ size 1064
checkpoint-300/trainer_state.json ADDED
@@ -0,0 +1,1821 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.935672514619883,
5
+ "eval_steps": 500,
6
+ "global_step": 300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5e-05,
14
+ "loss": 1.0506,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 0.0001,
20
+ "loss": 0.9988,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.00015000000000000001,
26
+ "loss": 0.9783,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.0002,
32
+ "loss": 0.9849,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 0.00025,
38
+ "loss": 1.0159,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 0.00030000000000000003,
44
+ "loss": 0.9847,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.00034999999999999994,
50
+ "loss": 0.9101,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.0004,
56
+ "loss": 0.9445,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 0.00045,
62
+ "loss": 0.8578,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 0.0005,
68
+ "loss": 0.9356,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 0.0005499999999999999,
74
+ "loss": 0.8395,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 0.0006000000000000001,
80
+ "loss": 0.9002,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 0.00065,
86
+ "loss": 0.8955,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 0.0006499959204043461,
92
+ "loss": 0.902,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.05,
97
+ "learning_rate": 0.0006499836817198032,
98
+ "loss": 0.8578,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 0.0006499632842536263,
104
+ "loss": 0.9005,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 0.0006499347285178979,
110
+ "loss": 0.8539,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.06,
115
+ "learning_rate": 0.0006498980152295153,
116
+ "loss": 0.8595,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 0.0006498531453101735,
122
+ "loss": 0.8845,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.06,
127
+ "learning_rate": 0.0006498001198863406,
128
+ "loss": 0.8924,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.07,
133
+ "learning_rate": 0.000649738940289231,
134
+ "loss": 0.8365,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.07,
139
+ "learning_rate": 0.0006496696080547707,
140
+ "loss": 0.8462,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.07,
145
+ "learning_rate": 0.0006495921249235596,
146
+ "loss": 0.8528,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.07,
151
+ "learning_rate": 0.0006495064928408277,
152
+ "loss": 0.8159,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.08,
157
+ "learning_rate": 0.0006494127139563859,
158
+ "loss": 0.8245,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.08,
163
+ "learning_rate": 0.000649310790624572,
164
+ "loss": 0.8081,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.08,
169
+ "learning_rate": 0.0006492007254041924,
170
+ "loss": 0.8535,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.09,
175
+ "learning_rate": 0.0006490825210584566,
176
+ "loss": 0.8162,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.09,
181
+ "learning_rate": 0.0006489561805549089,
182
+ "loss": 0.8456,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.09,
187
+ "learning_rate": 0.0006488217070653535,
188
+ "loss": 0.7799,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.1,
193
+ "learning_rate": 0.0006486791039657748,
194
+ "loss": 0.8088,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.1,
199
+ "learning_rate": 0.0006485283748362524,
200
+ "loss": 0.8683,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.1,
205
+ "learning_rate": 0.0006483695234608723,
206
+ "loss": 0.8871,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.11,
211
+ "learning_rate": 0.0006482025538276304,
212
+ "loss": 0.7711,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.11,
217
+ "learning_rate": 0.0006480274701283335,
218
+ "loss": 0.7621,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.11,
223
+ "learning_rate": 0.0006478442767584937,
224
+ "loss": 0.8243,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.12,
229
+ "learning_rate": 0.0006476529783172177,
230
+ "loss": 0.8257,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.12,
235
+ "learning_rate": 0.0006474535796070919,
236
+ "loss": 0.8141,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.12,
241
+ "learning_rate": 0.0006472460856340619,
242
+ "loss": 0.8109,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.12,
247
+ "learning_rate": 0.000647030501607306,
248
+ "loss": 0.7873,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.13,
253
+ "learning_rate": 0.000646806832939105,
254
+ "loss": 0.7386,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.13,
259
+ "learning_rate": 0.0006465750852447068,
260
+ "loss": 0.8636,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.13,
265
+ "learning_rate": 0.0006463352643421846,
266
+ "loss": 0.7357,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.14,
271
+ "learning_rate": 0.0006460873762522906,
272
+ "loss": 0.8142,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.14,
277
+ "learning_rate": 0.0006458314271983063,
278
+ "loss": 0.7275,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.14,
283
+ "learning_rate": 0.0006455674236058847,
284
+ "loss": 0.8029,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.15,
289
+ "learning_rate": 0.00064529537210289,
290
+ "loss": 0.7901,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.15,
295
+ "learning_rate": 0.0006450152795192307,
296
+ "loss": 0.7788,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.15,
301
+ "learning_rate": 0.0006447271528866881,
302
+ "loss": 0.7621,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.16,
307
+ "learning_rate": 0.0006444309994387402,
308
+ "loss": 0.7537,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.16,
313
+ "learning_rate": 0.0006441268266103796,
314
+ "loss": 0.7917,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.16,
319
+ "learning_rate": 0.0006438146420379274,
320
+ "loss": 0.8451,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.17,
325
+ "learning_rate": 0.0006434944535588411,
326
+ "loss": 0.8369,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.17,
331
+ "learning_rate": 0.0006431662692115173,
332
+ "loss": 0.7637,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.17,
337
+ "learning_rate": 0.0006428300972350914,
338
+ "loss": 0.8365,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.17,
343
+ "learning_rate": 0.0006424859460692295,
344
+ "loss": 0.7633,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.18,
349
+ "learning_rate": 0.0006421338243539165,
350
+ "loss": 0.7718,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.18,
355
+ "learning_rate": 0.0006417737409292403,
356
+ "loss": 0.7672,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.18,
361
+ "learning_rate": 0.0006414057048351684,
362
+ "loss": 0.8107,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.19,
367
+ "learning_rate": 0.0006410297253113221,
368
+ "loss": 0.7979,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.19,
373
+ "learning_rate": 0.0006406458117967443,
374
+ "loss": 0.7634,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.19,
379
+ "learning_rate": 0.0006402539739296618,
380
+ "loss": 0.7504,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.2,
385
+ "learning_rate": 0.0006398542215472443,
386
+ "loss": 0.8082,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.2,
391
+ "learning_rate": 0.0006394465646853571,
392
+ "loss": 0.8355,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.2,
397
+ "learning_rate": 0.0006390310135783086,
398
+ "loss": 0.7458,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.21,
403
+ "learning_rate": 0.0006386075786585944,
404
+ "loss": 0.7525,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.21,
409
+ "learning_rate": 0.0006381762705566343,
410
+ "loss": 0.7464,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.21,
415
+ "learning_rate": 0.0006377371001005063,
416
+ "loss": 0.78,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.22,
421
+ "learning_rate": 0.0006372900783156745,
422
+ "loss": 0.7752,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.22,
427
+ "learning_rate": 0.0006368352164247117,
428
+ "loss": 0.7299,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.22,
433
+ "learning_rate": 0.0006363725258470184,
434
+ "loss": 0.7722,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.22,
439
+ "learning_rate": 0.0006359020181985365,
440
+ "loss": 0.8236,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.23,
445
+ "learning_rate": 0.0006354237052914561,
446
+ "loss": 0.7589,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.23,
451
+ "learning_rate": 0.0006349375991339202,
452
+ "loss": 0.7948,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.23,
457
+ "learning_rate": 0.0006344437119297233,
458
+ "loss": 0.7528,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.24,
463
+ "learning_rate": 0.0006339420560780045,
464
+ "loss": 0.7842,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.24,
469
+ "learning_rate": 0.0006334326441729361,
470
+ "loss": 0.7541,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.24,
475
+ "learning_rate": 0.000632915489003408,
476
+ "loss": 0.7425,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.25,
481
+ "learning_rate": 0.0006323906035527062,
482
+ "loss": 0.8168,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.25,
487
+ "learning_rate": 0.0006318580009981871,
488
+ "loss": 0.8074,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.25,
493
+ "learning_rate": 0.0006313176947109465,
494
+ "loss": 0.7679,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.26,
499
+ "learning_rate": 0.0006307696982554838,
500
+ "loss": 0.7465,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.26,
505
+ "learning_rate": 0.0006302140253893622,
506
+ "loss": 0.7073,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.26,
511
+ "learning_rate": 0.0006296506900628619,
512
+ "loss": 0.7687,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.27,
517
+ "learning_rate": 0.0006290797064186315,
518
+ "loss": 0.7578,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.27,
523
+ "learning_rate": 0.0006285010887913319,
524
+ "loss": 0.7494,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.27,
529
+ "learning_rate": 0.0006279148517072765,
530
+ "loss": 0.7326,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.27,
535
+ "learning_rate": 0.000627321009884067,
536
+ "loss": 0.7603,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.28,
541
+ "learning_rate": 0.0006267195782302236,
542
+ "loss": 0.8141,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.28,
547
+ "learning_rate": 0.0006261105718448105,
548
+ "loss": 0.7542,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.28,
553
+ "learning_rate": 0.0006254940060170575,
554
+ "loss": 0.7597,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.29,
559
+ "learning_rate": 0.0006248698962259753,
560
+ "loss": 0.7332,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.29,
565
+ "learning_rate": 0.0006242382581399676,
566
+ "loss": 0.7031,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.29,
571
+ "learning_rate": 0.0006235991076164375,
572
+ "loss": 0.7258,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.3,
577
+ "learning_rate": 0.0006229524607013892,
578
+ "loss": 0.7634,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.3,
583
+ "learning_rate": 0.0006222983336290254,
584
+ "loss": 0.765,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.3,
589
+ "learning_rate": 0.0006216367428213398,
590
+ "loss": 0.7246,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.31,
595
+ "learning_rate": 0.0006209677048877046,
596
+ "loss": 0.7115,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.31,
601
+ "learning_rate": 0.0006202912366244535,
602
+ "loss": 0.6748,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.31,
607
+ "learning_rate": 0.0006196073550144604,
608
+ "loss": 0.6995,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.32,
613
+ "learning_rate": 0.0006189160772267127,
614
+ "loss": 0.7764,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.32,
619
+ "learning_rate": 0.00061821742061588,
620
+ "loss": 0.8628,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.32,
625
+ "learning_rate": 0.0006175114027218794,
626
+ "loss": 0.7266,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.32,
631
+ "learning_rate": 0.0006167980412694342,
632
+ "loss": 0.7557,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.33,
637
+ "learning_rate": 0.0006160773541676288,
638
+ "loss": 0.7518,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.33,
643
+ "learning_rate": 0.0006153493595094602,
644
+ "loss": 0.7589,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.33,
649
+ "learning_rate": 0.000614614075571383,
650
+ "loss": 0.7506,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.34,
655
+ "learning_rate": 0.0006138715208128501,
656
+ "loss": 0.6617,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.34,
661
+ "learning_rate": 0.0006131217138758505,
662
+ "loss": 0.7396,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.34,
667
+ "learning_rate": 0.0006123646735844401,
668
+ "loss": 0.7666,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.35,
673
+ "learning_rate": 0.00061160041894427,
674
+ "loss": 0.7555,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.35,
679
+ "learning_rate": 0.0006108289691421089,
680
+ "loss": 0.7301,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.35,
685
+ "learning_rate": 0.0006100503435453614,
686
+ "loss": 0.7364,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.36,
691
+ "learning_rate": 0.0006092645617015822,
692
+ "loss": 0.7461,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.36,
697
+ "learning_rate": 0.0006084716433379844,
698
+ "loss": 0.8086,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.36,
703
+ "learning_rate": 0.0006076716083609456,
704
+ "loss": 0.7577,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.36,
709
+ "learning_rate": 0.0006068644768555068,
710
+ "loss": 0.7094,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.37,
715
+ "learning_rate": 0.0006060502690848696,
716
+ "loss": 0.726,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.37,
721
+ "learning_rate": 0.0006052290054898859,
722
+ "loss": 0.7243,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.37,
727
+ "learning_rate": 0.0006044007066885458,
728
+ "loss": 0.7119,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.38,
733
+ "learning_rate": 0.0006035653934754598,
734
+ "loss": 0.7049,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.38,
739
+ "learning_rate": 0.0006027230868213366,
740
+ "loss": 0.7424,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.38,
745
+ "learning_rate": 0.0006018738078724563,
746
+ "loss": 0.7271,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.39,
751
+ "learning_rate": 0.0006010175779501405,
752
+ "loss": 0.7996,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.39,
757
+ "learning_rate": 0.0006001544185502158,
758
+ "loss": 0.7468,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.39,
763
+ "learning_rate": 0.0005992843513424754,
764
+ "loss": 0.7513,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.4,
769
+ "learning_rate": 0.0005984073981701338,
770
+ "loss": 0.7461,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.4,
775
+ "learning_rate": 0.0005975235810492794,
776
+ "loss": 0.6821,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.4,
781
+ "learning_rate": 0.0005966329221683215,
782
+ "loss": 0.7314,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.41,
787
+ "learning_rate": 0.0005957354438874327,
788
+ "loss": 0.714,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.41,
793
+ "learning_rate": 0.0005948311687379884,
794
+ "loss": 0.7339,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.41,
799
+ "learning_rate": 0.000593920119422001,
800
+ "loss": 0.7021,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.41,
805
+ "learning_rate": 0.0005930023188115492,
806
+ "loss": 0.7228,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.42,
811
+ "learning_rate": 0.0005920777899482046,
812
+ "loss": 0.7107,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.42,
817
+ "learning_rate": 0.0005911465560424532,
818
+ "loss": 0.659,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.42,
823
+ "learning_rate": 0.0005902086404731118,
824
+ "loss": 0.7028,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.43,
829
+ "learning_rate": 0.0005892640667867423,
830
+ "loss": 0.7275,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.43,
835
+ "learning_rate": 0.00058831285869706,
836
+ "loss": 0.6889,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.43,
841
+ "learning_rate": 0.0005873550400843378,
842
+ "loss": 0.7891,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.44,
847
+ "learning_rate": 0.0005863906349948074,
848
+ "loss": 0.7904,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.44,
853
+ "learning_rate": 0.0005854196676400555,
854
+ "loss": 0.6674,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.44,
859
+ "learning_rate": 0.0005844421623964157,
860
+ "loss": 0.7352,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.45,
865
+ "learning_rate": 0.0005834581438043563,
866
+ "loss": 0.6965,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.45,
871
+ "learning_rate": 0.000582467636567865,
872
+ "loss": 0.7238,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.45,
877
+ "learning_rate": 0.0005814706655538279,
878
+ "loss": 0.7064,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.46,
883
+ "learning_rate": 0.0005804672557914059,
884
+ "loss": 0.6984,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.46,
889
+ "learning_rate": 0.0005794574324714057,
890
+ "loss": 0.7594,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.46,
895
+ "learning_rate": 0.0005784412209456479,
896
+ "loss": 0.6884,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.46,
901
+ "learning_rate": 0.00057741864672633,
902
+ "loss": 0.7141,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.47,
907
+ "learning_rate": 0.0005763897354853866,
908
+ "loss": 0.705,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.47,
913
+ "learning_rate": 0.0005753545130538441,
914
+ "loss": 0.7613,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.47,
919
+ "learning_rate": 0.0005743130054211732,
920
+ "loss": 0.736,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.48,
925
+ "learning_rate": 0.0005732652387346351,
926
+ "loss": 0.6814,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.48,
931
+ "learning_rate": 0.0005722112392986265,
932
+ "loss": 0.7002,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.48,
937
+ "learning_rate": 0.0005711510335740182,
938
+ "loss": 0.7023,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.49,
943
+ "learning_rate": 0.0005700846481774913,
944
+ "loss": 0.7617,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.49,
949
+ "learning_rate": 0.0005690121098808687,
950
+ "loss": 0.7079,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.49,
955
+ "learning_rate": 0.0005679334456104429,
956
+ "loss": 0.7614,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.5,
961
+ "learning_rate": 0.000566848682446301,
962
+ "loss": 0.6786,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.5,
967
+ "learning_rate": 0.0005657578476216432,
968
+ "loss": 0.6773,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.5,
973
+ "learning_rate": 0.0005646609685221003,
974
+ "loss": 0.7085,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.51,
979
+ "learning_rate": 0.0005635580726850462,
980
+ "loss": 0.7167,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.51,
985
+ "learning_rate": 0.0005624491877989055,
986
+ "loss": 0.7192,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.51,
991
+ "learning_rate": 0.0005613343417024599,
992
+ "loss": 0.6761,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.51,
997
+ "learning_rate": 0.0005602135623841478,
998
+ "loss": 0.7508,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.52,
1003
+ "learning_rate": 0.0005590868779813627,
1004
+ "loss": 0.6978,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.52,
1009
+ "learning_rate": 0.0005579543167797467,
1010
+ "loss": 0.7459,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.52,
1015
+ "learning_rate": 0.0005568159072124794,
1016
+ "loss": 0.7438,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.53,
1021
+ "learning_rate": 0.0005556716778595654,
1022
+ "loss": 0.7073,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.53,
1027
+ "learning_rate": 0.0005545216574471164,
1028
+ "loss": 0.6385,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.53,
1033
+ "learning_rate": 0.0005533658748466291,
1034
+ "loss": 0.6993,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.54,
1039
+ "learning_rate": 0.0005522043590742615,
1040
+ "loss": 0.7258,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.54,
1045
+ "learning_rate": 0.0005510371392901041,
1046
+ "loss": 0.7405,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.54,
1051
+ "learning_rate": 0.0005498642447974479,
1052
+ "loss": 0.7525,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.55,
1057
+ "learning_rate": 0.0005486857050420481,
1058
+ "loss": 0.6639,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.55,
1063
+ "learning_rate": 0.0005475015496113861,
1064
+ "loss": 0.7415,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.55,
1069
+ "learning_rate": 0.0005463118082339253,
1070
+ "loss": 0.7816,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.56,
1075
+ "learning_rate": 0.0005451165107783659,
1076
+ "loss": 0.711,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.56,
1081
+ "learning_rate": 0.0005439156872528941,
1082
+ "loss": 0.7138,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.56,
1087
+ "learning_rate": 0.0005427093678044299,
1088
+ "loss": 0.7069,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.56,
1093
+ "learning_rate": 0.0005414975827178688,
1094
+ "loss": 0.7553,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.57,
1099
+ "learning_rate": 0.000540280362415323,
1100
+ "loss": 0.7045,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.57,
1105
+ "learning_rate": 0.0005390577374553561,
1106
+ "loss": 0.7011,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.57,
1111
+ "learning_rate": 0.0005378297385322177,
1112
+ "loss": 0.7441,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.58,
1117
+ "learning_rate": 0.0005365963964750707,
1118
+ "loss": 0.6797,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.58,
1123
+ "learning_rate": 0.0005353577422472196,
1124
+ "loss": 0.6901,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.58,
1129
+ "learning_rate": 0.0005341138069453313,
1130
+ "loss": 0.7136,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.59,
1135
+ "learning_rate": 0.0005328646217986553,
1136
+ "loss": 0.7459,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.59,
1141
+ "learning_rate": 0.0005316102181682396,
1142
+ "loss": 0.7064,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.59,
1147
+ "learning_rate": 0.0005303506275461433,
1148
+ "loss": 0.6705,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.6,
1153
+ "learning_rate": 0.0005290858815546459,
1154
+ "loss": 0.7008,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.6,
1159
+ "learning_rate": 0.0005278160119454536,
1160
+ "loss": 0.7538,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.6,
1165
+ "learning_rate": 0.0005265410505989021,
1166
+ "loss": 0.7726,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.61,
1171
+ "learning_rate": 0.000525261029523156,
1172
+ "loss": 0.7532,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.61,
1177
+ "learning_rate": 0.0005239759808534055,
1178
+ "loss": 0.6978,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.61,
1183
+ "learning_rate": 0.0005226859368510599,
1184
+ "loss": 0.7182,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.61,
1189
+ "learning_rate": 0.0005213909299029368,
1190
+ "loss": 0.6776,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.62,
1195
+ "learning_rate": 0.0005200909925204501,
1196
+ "loss": 0.7447,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.62,
1201
+ "learning_rate": 0.0005187861573387928,
1202
+ "loss": 0.7298,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.62,
1207
+ "learning_rate": 0.0005174764571161185,
1208
+ "loss": 0.6833,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.63,
1213
+ "learning_rate": 0.0005161619247327185,
1214
+ "loss": 0.7518,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.63,
1219
+ "learning_rate": 0.0005148425931901961,
1220
+ "loss": 0.7429,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.63,
1225
+ "learning_rate": 0.0005135184956106394,
1226
+ "loss": 0.763,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.64,
1231
+ "learning_rate": 0.000512189665235788,
1232
+ "loss": 0.7682,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.64,
1237
+ "learning_rate": 0.0005108561354261996,
1238
+ "loss": 0.7063,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.64,
1243
+ "learning_rate": 0.0005095179396604121,
1244
+ "loss": 0.6956,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.65,
1249
+ "learning_rate": 0.0005081751115341034,
1250
+ "loss": 0.7434,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.65,
1255
+ "learning_rate": 0.0005068276847592474,
1256
+ "loss": 0.6673,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.65,
1261
+ "learning_rate": 0.0005054756931632682,
1262
+ "loss": 0.6448,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.65,
1267
+ "learning_rate": 0.0005041191706881909,
1268
+ "loss": 0.7095,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.66,
1273
+ "learning_rate": 0.0005027581513897888,
1274
+ "loss": 0.673,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.66,
1279
+ "learning_rate": 0.000501392669436729,
1280
+ "loss": 0.6363,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.66,
1285
+ "learning_rate": 0.0005000227591097145,
1286
+ "loss": 0.6711,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.67,
1291
+ "learning_rate": 0.0004986484548006237,
1292
+ "loss": 0.6375,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.67,
1297
+ "learning_rate": 0.0004972697910116468,
1298
+ "loss": 0.7466,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.67,
1303
+ "learning_rate": 0.0004958868023544192,
1304
+ "loss": 0.7147,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.68,
1309
+ "learning_rate": 0.0004944995235491534,
1310
+ "loss": 0.714,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.68,
1315
+ "learning_rate": 0.0004931079894237669,
1316
+ "loss": 0.7377,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.68,
1321
+ "learning_rate": 0.0004917122349130078,
1322
+ "loss": 0.7087,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.69,
1327
+ "learning_rate": 0.000490312295057578,
1328
+ "loss": 0.6716,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.69,
1333
+ "learning_rate": 0.0004889082050032529,
1334
+ "loss": 0.7298,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.69,
1339
+ "learning_rate": 0.0004875,
1340
+ "loss": 0.6557,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.7,
1345
+ "learning_rate": 0.0004860877154010932,
1346
+ "loss": 0.7042,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.7,
1351
+ "learning_rate": 0.00048467138666222534,
1352
+ "loss": 0.6617,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.7,
1357
+ "learning_rate": 0.00048325104934061853,
1358
+ "loss": 0.7019,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.7,
1363
+ "learning_rate": 0.00048182673909413103,
1364
+ "loss": 0.6756,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.71,
1369
+ "learning_rate": 0.00048039849168036205,
1370
+ "loss": 0.709,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.71,
1375
+ "learning_rate": 0.00047896634295575434,
1376
+ "loss": 0.7434,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.71,
1381
+ "learning_rate": 0.00047753032887469385,
1382
+ "loss": 0.7533,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.72,
1387
+ "learning_rate": 0.0004760904854886072,
1388
+ "loss": 0.7019,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.72,
1393
+ "learning_rate": 0.0004746468489450562,
1394
+ "loss": 0.6852,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.72,
1399
+ "learning_rate": 0.0004731994554868307,
1400
+ "loss": 0.7228,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.73,
1405
+ "learning_rate": 0.000471748341451039,
1406
+ "loss": 0.7513,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.73,
1411
+ "learning_rate": 0.0004702935432681949,
1412
+ "loss": 0.6896,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.73,
1417
+ "learning_rate": 0.0004688350974613038,
1418
+ "loss": 0.6815,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.74,
1423
+ "learning_rate": 0.0004673730406449449,
1424
+ "loss": 0.7682,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.74,
1429
+ "learning_rate": 0.00046590740952435323,
1430
+ "loss": 0.7025,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.74,
1435
+ "learning_rate": 0.0004644382408944968,
1436
+ "loss": 0.6662,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.75,
1441
+ "learning_rate": 0.00046296557163915395,
1442
+ "loss": 0.7541,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.75,
1447
+ "learning_rate": 0.0004614894387299867,
1448
+ "loss": 0.7336,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.75,
1453
+ "learning_rate": 0.0004600098792256131,
1454
+ "loss": 0.6618,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.75,
1459
+ "learning_rate": 0.0004585269302706762,
1460
+ "loss": 0.6729,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.76,
1465
+ "learning_rate": 0.0004570406290949121,
1466
+ "loss": 0.7327,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.76,
1471
+ "learning_rate": 0.0004555510130122151,
1472
+ "loss": 0.6778,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.76,
1477
+ "learning_rate": 0.0004540581194197008,
1478
+ "loss": 0.6219,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.77,
1483
+ "learning_rate": 0.00045256198579676755,
1484
+ "loss": 0.6984,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.77,
1489
+ "learning_rate": 0.000451062649704155,
1490
+ "loss": 0.637,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.77,
1495
+ "learning_rate": 0.000449560148783002,
1496
+ "loss": 0.658,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.78,
1501
+ "learning_rate": 0.0004480545207539004,
1502
+ "loss": 0.7305,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.78,
1507
+ "learning_rate": 0.0004465458034159491,
1508
+ "loss": 0.6788,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.78,
1513
+ "learning_rate": 0.00044503403464580475,
1514
+ "loss": 0.7096,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.79,
1519
+ "learning_rate": 0.00044351925239673087,
1520
+ "loss": 0.7108,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.79,
1525
+ "learning_rate": 0.0004420014946976447,
1526
+ "loss": 0.6518,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.79,
1531
+ "learning_rate": 0.00044048079965216294,
1532
+ "loss": 0.7262,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.8,
1537
+ "learning_rate": 0.0004389572054376452,
1538
+ "loss": 0.6988,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.8,
1543
+ "learning_rate": 0.00043743075030423475,
1544
+ "loss": 0.6637,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.8,
1549
+ "learning_rate": 0.0004359014725738994,
1550
+ "loss": 0.7055,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.8,
1555
+ "learning_rate": 0.00043436941063946843,
1556
+ "loss": 0.7179,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.81,
1561
+ "learning_rate": 0.0004328346029636694,
1562
+ "loss": 0.6955,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.81,
1567
+ "learning_rate": 0.0004312970880781621,
1568
+ "loss": 0.6749,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.81,
1573
+ "learning_rate": 0.0004297569045825713,
1574
+ "loss": 0.6711,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.82,
1579
+ "learning_rate": 0.00042821409114351803,
1580
+ "loss": 0.6366,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.82,
1585
+ "learning_rate": 0.00042666868649364844,
1586
+ "loss": 0.7144,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.82,
1591
+ "learning_rate": 0.0004251207294306617,
1592
+ "loss": 0.656,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.83,
1597
+ "learning_rate": 0.00042357025881633535,
1598
+ "loss": 0.6803,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.83,
1603
+ "learning_rate": 0.00042201731357555073,
1604
+ "loss": 0.7044,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.83,
1609
+ "learning_rate": 0.0004204619326953149,
1610
+ "loss": 0.6488,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.84,
1615
+ "learning_rate": 0.00041890415522378223,
1616
+ "loss": 0.6928,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.84,
1621
+ "learning_rate": 0.00041734402026927394,
1622
+ "loss": 0.6764,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.84,
1627
+ "learning_rate": 0.00041578156699929636,
1628
+ "loss": 0.6278,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.85,
1633
+ "learning_rate": 0.0004142168346395577,
1634
+ "loss": 0.691,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.85,
1639
+ "learning_rate": 0.0004126498624729829,
1640
+ "loss": 0.6865,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.85,
1645
+ "learning_rate": 0.000411080689838728,
1646
+ "loss": 0.6715,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.85,
1651
+ "learning_rate": 0.00040950935613119226,
1652
+ "loss": 0.6563,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.86,
1657
+ "learning_rate": 0.00040793590079902885,
1658
+ "loss": 0.7608,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.86,
1663
+ "learning_rate": 0.00040636036334415487,
1664
+ "loss": 0.6189,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.86,
1669
+ "learning_rate": 0.0004047827833207597,
1670
+ "loss": 0.6981,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.87,
1675
+ "learning_rate": 0.0004032032003343117,
1676
+ "loss": 0.644,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.87,
1681
+ "learning_rate": 0.0004016216540405639,
1682
+ "loss": 0.7286,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.87,
1687
+ "learning_rate": 0.0004000381841445586,
1688
+ "loss": 0.6694,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.88,
1693
+ "learning_rate": 0.00039845283039963093,
1694
+ "loss": 0.7204,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.88,
1699
+ "learning_rate": 0.0003968656326064099,
1700
+ "loss": 0.7042,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.88,
1705
+ "learning_rate": 0.00039527663061181983,
1706
+ "loss": 0.712,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.89,
1711
+ "learning_rate": 0.00039368586430808014,
1712
+ "loss": 0.7179,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.89,
1717
+ "learning_rate": 0.00039209337363170347,
1718
+ "loss": 0.6903,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.89,
1723
+ "learning_rate": 0.00039049919856249315,
1724
+ "loss": 0.6924,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.9,
1729
+ "learning_rate": 0.0003889033791225395,
1730
+ "loss": 0.6713,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.9,
1735
+ "learning_rate": 0.000387305955375215,
1736
+ "loss": 0.7852,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.9,
1741
+ "learning_rate": 0.0003857069674241689,
1742
+ "loss": 0.6517,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.9,
1747
+ "learning_rate": 0.00038410645541232,
1748
+ "loss": 0.6764,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.91,
1753
+ "learning_rate": 0.0003825044595208488,
1754
+ "loss": 0.7183,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.91,
1759
+ "learning_rate": 0.000380901019968189,
1760
+ "loss": 0.6826,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.91,
1765
+ "learning_rate": 0.0003792961770090178,
1766
+ "loss": 0.6936,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.92,
1771
+ "learning_rate": 0.0003776899709332449,
1772
+ "loss": 0.718,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.92,
1777
+ "learning_rate": 0.00037608244206500176,
1778
+ "loss": 0.6795,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.92,
1783
+ "learning_rate": 0.00037447363076162853,
1784
+ "loss": 0.6517,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.93,
1789
+ "learning_rate": 0.0003728635774126613,
1790
+ "loss": 0.6849,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.93,
1795
+ "learning_rate": 0.0003712523224388177,
1796
+ "loss": 0.6663,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.93,
1801
+ "learning_rate": 0.00036963990629098264,
1802
+ "loss": 0.6585,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.94,
1807
+ "learning_rate": 0.0003680263694491925,
1808
+ "loss": 0.7054,
1809
+ "step": 300
1810
+ }
1811
+ ],
1812
+ "logging_steps": 1,
1813
+ "max_steps": 640,
1814
+ "num_input_tokens_seen": 0,
1815
+ "num_train_epochs": 2,
1816
+ "save_steps": 50,
1817
+ "total_flos": 7.783562896461005e+17,
1818
+ "train_batch_size": 4,
1819
+ "trial_name": null,
1820
+ "trial_params": null
1821
+ }
checkpoint-300/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d688198fe54ccac5c0a98d11fb9e7224690ace94f7e483ba1d16db91cf33a5c4
3
+ size 4664
checkpoint-350/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: NousResearch/Llama-2-13b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-350/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "NousResearch/Llama-2-13b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "o_proj",
23
+ "up_proj",
24
+ "k_proj",
25
+ "gate_proj",
26
+ "down_proj",
27
+ "v_proj",
28
+ "q_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
checkpoint-350/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c10a1ab49cf385bdd6b9c6f544c8ce4a44c83d0cbc74c586ea355162ce407583
3
+ size 2002857080
checkpoint-350/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b8cc02158584f32821542d6a298df3ad0263592831834e46aa7dff0295d6d98
3
+ size 1004005012
checkpoint-350/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:203e9bfabd925cb4ec7129d24877156fcee87215187c35a867e358e56a9425a4
3
+ size 14244
checkpoint-350/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0646493b7d2b2399260f02aa8eb7889f586cbddf4f800cffd32db5f08f271a69
3
+ size 1064
checkpoint-350/trainer_state.json ADDED
@@ -0,0 +1,2121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0916179337231968,
5
+ "eval_steps": 500,
6
+ "global_step": 350,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5e-05,
14
+ "loss": 1.0506,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 0.0001,
20
+ "loss": 0.9988,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 0.00015000000000000001,
26
+ "loss": 0.9783,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 0.0002,
32
+ "loss": 0.9849,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 0.00025,
38
+ "loss": 1.0159,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 0.00030000000000000003,
44
+ "loss": 0.9847,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 0.00034999999999999994,
50
+ "loss": 0.9101,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 0.0004,
56
+ "loss": 0.9445,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 0.00045,
62
+ "loss": 0.8578,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 0.0005,
68
+ "loss": 0.9356,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 0.0005499999999999999,
74
+ "loss": 0.8395,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 0.0006000000000000001,
80
+ "loss": 0.9002,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 0.00065,
86
+ "loss": 0.8955,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 0.0006499959204043461,
92
+ "loss": 0.902,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.05,
97
+ "learning_rate": 0.0006499836817198032,
98
+ "loss": 0.8578,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 0.0006499632842536263,
104
+ "loss": 0.9005,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 0.0006499347285178979,
110
+ "loss": 0.8539,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.06,
115
+ "learning_rate": 0.0006498980152295153,
116
+ "loss": 0.8595,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 0.0006498531453101735,
122
+ "loss": 0.8845,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.06,
127
+ "learning_rate": 0.0006498001198863406,
128
+ "loss": 0.8924,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.07,
133
+ "learning_rate": 0.000649738940289231,
134
+ "loss": 0.8365,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.07,
139
+ "learning_rate": 0.0006496696080547707,
140
+ "loss": 0.8462,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.07,
145
+ "learning_rate": 0.0006495921249235596,
146
+ "loss": 0.8528,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.07,
151
+ "learning_rate": 0.0006495064928408277,
152
+ "loss": 0.8159,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.08,
157
+ "learning_rate": 0.0006494127139563859,
158
+ "loss": 0.8245,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.08,
163
+ "learning_rate": 0.000649310790624572,
164
+ "loss": 0.8081,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.08,
169
+ "learning_rate": 0.0006492007254041924,
170
+ "loss": 0.8535,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.09,
175
+ "learning_rate": 0.0006490825210584566,
176
+ "loss": 0.8162,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.09,
181
+ "learning_rate": 0.0006489561805549089,
182
+ "loss": 0.8456,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.09,
187
+ "learning_rate": 0.0006488217070653535,
188
+ "loss": 0.7799,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.1,
193
+ "learning_rate": 0.0006486791039657748,
194
+ "loss": 0.8088,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.1,
199
+ "learning_rate": 0.0006485283748362524,
200
+ "loss": 0.8683,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.1,
205
+ "learning_rate": 0.0006483695234608723,
206
+ "loss": 0.8871,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.11,
211
+ "learning_rate": 0.0006482025538276304,
212
+ "loss": 0.7711,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.11,
217
+ "learning_rate": 0.0006480274701283335,
218
+ "loss": 0.7621,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.11,
223
+ "learning_rate": 0.0006478442767584937,
224
+ "loss": 0.8243,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.12,
229
+ "learning_rate": 0.0006476529783172177,
230
+ "loss": 0.8257,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.12,
235
+ "learning_rate": 0.0006474535796070919,
236
+ "loss": 0.8141,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.12,
241
+ "learning_rate": 0.0006472460856340619,
242
+ "loss": 0.8109,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.12,
247
+ "learning_rate": 0.000647030501607306,
248
+ "loss": 0.7873,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.13,
253
+ "learning_rate": 0.000646806832939105,
254
+ "loss": 0.7386,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.13,
259
+ "learning_rate": 0.0006465750852447068,
260
+ "loss": 0.8636,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.13,
265
+ "learning_rate": 0.0006463352643421846,
266
+ "loss": 0.7357,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.14,
271
+ "learning_rate": 0.0006460873762522906,
272
+ "loss": 0.8142,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.14,
277
+ "learning_rate": 0.0006458314271983063,
278
+ "loss": 0.7275,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.14,
283
+ "learning_rate": 0.0006455674236058847,
284
+ "loss": 0.8029,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.15,
289
+ "learning_rate": 0.00064529537210289,
290
+ "loss": 0.7901,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.15,
295
+ "learning_rate": 0.0006450152795192307,
296
+ "loss": 0.7788,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.15,
301
+ "learning_rate": 0.0006447271528866881,
302
+ "loss": 0.7621,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.16,
307
+ "learning_rate": 0.0006444309994387402,
308
+ "loss": 0.7537,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.16,
313
+ "learning_rate": 0.0006441268266103796,
314
+ "loss": 0.7917,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.16,
319
+ "learning_rate": 0.0006438146420379274,
320
+ "loss": 0.8451,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.17,
325
+ "learning_rate": 0.0006434944535588411,
326
+ "loss": 0.8369,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.17,
331
+ "learning_rate": 0.0006431662692115173,
332
+ "loss": 0.7637,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.17,
337
+ "learning_rate": 0.0006428300972350914,
338
+ "loss": 0.8365,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.17,
343
+ "learning_rate": 0.0006424859460692295,
344
+ "loss": 0.7633,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.18,
349
+ "learning_rate": 0.0006421338243539165,
350
+ "loss": 0.7718,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.18,
355
+ "learning_rate": 0.0006417737409292403,
356
+ "loss": 0.7672,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.18,
361
+ "learning_rate": 0.0006414057048351684,
362
+ "loss": 0.8107,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.19,
367
+ "learning_rate": 0.0006410297253113221,
368
+ "loss": 0.7979,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.19,
373
+ "learning_rate": 0.0006406458117967443,
374
+ "loss": 0.7634,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.19,
379
+ "learning_rate": 0.0006402539739296618,
380
+ "loss": 0.7504,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.2,
385
+ "learning_rate": 0.0006398542215472443,
386
+ "loss": 0.8082,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.2,
391
+ "learning_rate": 0.0006394465646853571,
392
+ "loss": 0.8355,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.2,
397
+ "learning_rate": 0.0006390310135783086,
398
+ "loss": 0.7458,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.21,
403
+ "learning_rate": 0.0006386075786585944,
404
+ "loss": 0.7525,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.21,
409
+ "learning_rate": 0.0006381762705566343,
410
+ "loss": 0.7464,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.21,
415
+ "learning_rate": 0.0006377371001005063,
416
+ "loss": 0.78,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.22,
421
+ "learning_rate": 0.0006372900783156745,
422
+ "loss": 0.7752,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.22,
427
+ "learning_rate": 0.0006368352164247117,
428
+ "loss": 0.7299,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.22,
433
+ "learning_rate": 0.0006363725258470184,
434
+ "loss": 0.7722,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.22,
439
+ "learning_rate": 0.0006359020181985365,
440
+ "loss": 0.8236,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.23,
445
+ "learning_rate": 0.0006354237052914561,
446
+ "loss": 0.7589,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.23,
451
+ "learning_rate": 0.0006349375991339202,
452
+ "loss": 0.7948,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.23,
457
+ "learning_rate": 0.0006344437119297233,
458
+ "loss": 0.7528,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.24,
463
+ "learning_rate": 0.0006339420560780045,
464
+ "loss": 0.7842,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.24,
469
+ "learning_rate": 0.0006334326441729361,
470
+ "loss": 0.7541,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.24,
475
+ "learning_rate": 0.000632915489003408,
476
+ "loss": 0.7425,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.25,
481
+ "learning_rate": 0.0006323906035527062,
482
+ "loss": 0.8168,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.25,
487
+ "learning_rate": 0.0006318580009981871,
488
+ "loss": 0.8074,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.25,
493
+ "learning_rate": 0.0006313176947109465,
494
+ "loss": 0.7679,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.26,
499
+ "learning_rate": 0.0006307696982554838,
500
+ "loss": 0.7465,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.26,
505
+ "learning_rate": 0.0006302140253893622,
506
+ "loss": 0.7073,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.26,
511
+ "learning_rate": 0.0006296506900628619,
512
+ "loss": 0.7687,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.27,
517
+ "learning_rate": 0.0006290797064186315,
518
+ "loss": 0.7578,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.27,
523
+ "learning_rate": 0.0006285010887913319,
524
+ "loss": 0.7494,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.27,
529
+ "learning_rate": 0.0006279148517072765,
530
+ "loss": 0.7326,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.27,
535
+ "learning_rate": 0.000627321009884067,
536
+ "loss": 0.7603,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.28,
541
+ "learning_rate": 0.0006267195782302236,
542
+ "loss": 0.8141,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.28,
547
+ "learning_rate": 0.0006261105718448105,
548
+ "loss": 0.7542,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.28,
553
+ "learning_rate": 0.0006254940060170575,
554
+ "loss": 0.7597,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.29,
559
+ "learning_rate": 0.0006248698962259753,
560
+ "loss": 0.7332,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.29,
565
+ "learning_rate": 0.0006242382581399676,
566
+ "loss": 0.7031,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.29,
571
+ "learning_rate": 0.0006235991076164375,
572
+ "loss": 0.7258,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.3,
577
+ "learning_rate": 0.0006229524607013892,
578
+ "loss": 0.7634,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.3,
583
+ "learning_rate": 0.0006222983336290254,
584
+ "loss": 0.765,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.3,
589
+ "learning_rate": 0.0006216367428213398,
590
+ "loss": 0.7246,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.31,
595
+ "learning_rate": 0.0006209677048877046,
596
+ "loss": 0.7115,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.31,
601
+ "learning_rate": 0.0006202912366244535,
602
+ "loss": 0.6748,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.31,
607
+ "learning_rate": 0.0006196073550144604,
608
+ "loss": 0.6995,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.32,
613
+ "learning_rate": 0.0006189160772267127,
614
+ "loss": 0.7764,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.32,
619
+ "learning_rate": 0.00061821742061588,
620
+ "loss": 0.8628,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.32,
625
+ "learning_rate": 0.0006175114027218794,
626
+ "loss": 0.7266,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.32,
631
+ "learning_rate": 0.0006167980412694342,
632
+ "loss": 0.7557,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.33,
637
+ "learning_rate": 0.0006160773541676288,
638
+ "loss": 0.7518,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.33,
643
+ "learning_rate": 0.0006153493595094602,
644
+ "loss": 0.7589,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.33,
649
+ "learning_rate": 0.000614614075571383,
650
+ "loss": 0.7506,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.34,
655
+ "learning_rate": 0.0006138715208128501,
656
+ "loss": 0.6617,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.34,
661
+ "learning_rate": 0.0006131217138758505,
662
+ "loss": 0.7396,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.34,
667
+ "learning_rate": 0.0006123646735844401,
668
+ "loss": 0.7666,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.35,
673
+ "learning_rate": 0.00061160041894427,
674
+ "loss": 0.7555,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.35,
679
+ "learning_rate": 0.0006108289691421089,
680
+ "loss": 0.7301,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.35,
685
+ "learning_rate": 0.0006100503435453614,
686
+ "loss": 0.7364,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.36,
691
+ "learning_rate": 0.0006092645617015822,
692
+ "loss": 0.7461,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.36,
697
+ "learning_rate": 0.0006084716433379844,
698
+ "loss": 0.8086,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.36,
703
+ "learning_rate": 0.0006076716083609456,
704
+ "loss": 0.7577,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.36,
709
+ "learning_rate": 0.0006068644768555068,
710
+ "loss": 0.7094,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.37,
715
+ "learning_rate": 0.0006060502690848696,
716
+ "loss": 0.726,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.37,
721
+ "learning_rate": 0.0006052290054898859,
722
+ "loss": 0.7243,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.37,
727
+ "learning_rate": 0.0006044007066885458,
728
+ "loss": 0.7119,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.38,
733
+ "learning_rate": 0.0006035653934754598,
734
+ "loss": 0.7049,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.38,
739
+ "learning_rate": 0.0006027230868213366,
740
+ "loss": 0.7424,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.38,
745
+ "learning_rate": 0.0006018738078724563,
746
+ "loss": 0.7271,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.39,
751
+ "learning_rate": 0.0006010175779501405,
752
+ "loss": 0.7996,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.39,
757
+ "learning_rate": 0.0006001544185502158,
758
+ "loss": 0.7468,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.39,
763
+ "learning_rate": 0.0005992843513424754,
764
+ "loss": 0.7513,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.4,
769
+ "learning_rate": 0.0005984073981701338,
770
+ "loss": 0.7461,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.4,
775
+ "learning_rate": 0.0005975235810492794,
776
+ "loss": 0.6821,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.4,
781
+ "learning_rate": 0.0005966329221683215,
782
+ "loss": 0.7314,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.41,
787
+ "learning_rate": 0.0005957354438874327,
788
+ "loss": 0.714,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.41,
793
+ "learning_rate": 0.0005948311687379884,
794
+ "loss": 0.7339,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.41,
799
+ "learning_rate": 0.000593920119422001,
800
+ "loss": 0.7021,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.41,
805
+ "learning_rate": 0.0005930023188115492,
806
+ "loss": 0.7228,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.42,
811
+ "learning_rate": 0.0005920777899482046,
812
+ "loss": 0.7107,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.42,
817
+ "learning_rate": 0.0005911465560424532,
818
+ "loss": 0.659,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.42,
823
+ "learning_rate": 0.0005902086404731118,
824
+ "loss": 0.7028,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.43,
829
+ "learning_rate": 0.0005892640667867423,
830
+ "loss": 0.7275,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.43,
835
+ "learning_rate": 0.00058831285869706,
836
+ "loss": 0.6889,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.43,
841
+ "learning_rate": 0.0005873550400843378,
842
+ "loss": 0.7891,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.44,
847
+ "learning_rate": 0.0005863906349948074,
848
+ "loss": 0.7904,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.44,
853
+ "learning_rate": 0.0005854196676400555,
854
+ "loss": 0.6674,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.44,
859
+ "learning_rate": 0.0005844421623964157,
860
+ "loss": 0.7352,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.45,
865
+ "learning_rate": 0.0005834581438043563,
866
+ "loss": 0.6965,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.45,
871
+ "learning_rate": 0.000582467636567865,
872
+ "loss": 0.7238,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.45,
877
+ "learning_rate": 0.0005814706655538279,
878
+ "loss": 0.7064,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.46,
883
+ "learning_rate": 0.0005804672557914059,
884
+ "loss": 0.6984,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.46,
889
+ "learning_rate": 0.0005794574324714057,
890
+ "loss": 0.7594,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.46,
895
+ "learning_rate": 0.0005784412209456479,
896
+ "loss": 0.6884,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.46,
901
+ "learning_rate": 0.00057741864672633,
902
+ "loss": 0.7141,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.47,
907
+ "learning_rate": 0.0005763897354853866,
908
+ "loss": 0.705,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.47,
913
+ "learning_rate": 0.0005753545130538441,
914
+ "loss": 0.7613,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.47,
919
+ "learning_rate": 0.0005743130054211732,
920
+ "loss": 0.736,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.48,
925
+ "learning_rate": 0.0005732652387346351,
926
+ "loss": 0.6814,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.48,
931
+ "learning_rate": 0.0005722112392986265,
932
+ "loss": 0.7002,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.48,
937
+ "learning_rate": 0.0005711510335740182,
938
+ "loss": 0.7023,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.49,
943
+ "learning_rate": 0.0005700846481774913,
944
+ "loss": 0.7617,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.49,
949
+ "learning_rate": 0.0005690121098808687,
950
+ "loss": 0.7079,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.49,
955
+ "learning_rate": 0.0005679334456104429,
956
+ "loss": 0.7614,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.5,
961
+ "learning_rate": 0.000566848682446301,
962
+ "loss": 0.6786,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.5,
967
+ "learning_rate": 0.0005657578476216432,
968
+ "loss": 0.6773,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.5,
973
+ "learning_rate": 0.0005646609685221003,
974
+ "loss": 0.7085,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.51,
979
+ "learning_rate": 0.0005635580726850462,
980
+ "loss": 0.7167,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.51,
985
+ "learning_rate": 0.0005624491877989055,
986
+ "loss": 0.7192,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.51,
991
+ "learning_rate": 0.0005613343417024599,
992
+ "loss": 0.6761,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.51,
997
+ "learning_rate": 0.0005602135623841478,
998
+ "loss": 0.7508,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.52,
1003
+ "learning_rate": 0.0005590868779813627,
1004
+ "loss": 0.6978,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.52,
1009
+ "learning_rate": 0.0005579543167797467,
1010
+ "loss": 0.7459,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.52,
1015
+ "learning_rate": 0.0005568159072124794,
1016
+ "loss": 0.7438,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.53,
1021
+ "learning_rate": 0.0005556716778595654,
1022
+ "loss": 0.7073,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.53,
1027
+ "learning_rate": 0.0005545216574471164,
1028
+ "loss": 0.6385,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.53,
1033
+ "learning_rate": 0.0005533658748466291,
1034
+ "loss": 0.6993,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.54,
1039
+ "learning_rate": 0.0005522043590742615,
1040
+ "loss": 0.7258,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.54,
1045
+ "learning_rate": 0.0005510371392901041,
1046
+ "loss": 0.7405,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.54,
1051
+ "learning_rate": 0.0005498642447974479,
1052
+ "loss": 0.7525,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.55,
1057
+ "learning_rate": 0.0005486857050420481,
1058
+ "loss": 0.6639,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.55,
1063
+ "learning_rate": 0.0005475015496113861,
1064
+ "loss": 0.7415,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.55,
1069
+ "learning_rate": 0.0005463118082339253,
1070
+ "loss": 0.7816,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.56,
1075
+ "learning_rate": 0.0005451165107783659,
1076
+ "loss": 0.711,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.56,
1081
+ "learning_rate": 0.0005439156872528941,
1082
+ "loss": 0.7138,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.56,
1087
+ "learning_rate": 0.0005427093678044299,
1088
+ "loss": 0.7069,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.56,
1093
+ "learning_rate": 0.0005414975827178688,
1094
+ "loss": 0.7553,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.57,
1099
+ "learning_rate": 0.000540280362415323,
1100
+ "loss": 0.7045,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.57,
1105
+ "learning_rate": 0.0005390577374553561,
1106
+ "loss": 0.7011,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.57,
1111
+ "learning_rate": 0.0005378297385322177,
1112
+ "loss": 0.7441,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.58,
1117
+ "learning_rate": 0.0005365963964750707,
1118
+ "loss": 0.6797,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.58,
1123
+ "learning_rate": 0.0005353577422472196,
1124
+ "loss": 0.6901,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.58,
1129
+ "learning_rate": 0.0005341138069453313,
1130
+ "loss": 0.7136,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.59,
1135
+ "learning_rate": 0.0005328646217986553,
1136
+ "loss": 0.7459,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.59,
1141
+ "learning_rate": 0.0005316102181682396,
1142
+ "loss": 0.7064,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.59,
1147
+ "learning_rate": 0.0005303506275461433,
1148
+ "loss": 0.6705,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.6,
1153
+ "learning_rate": 0.0005290858815546459,
1154
+ "loss": 0.7008,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.6,
1159
+ "learning_rate": 0.0005278160119454536,
1160
+ "loss": 0.7538,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.6,
1165
+ "learning_rate": 0.0005265410505989021,
1166
+ "loss": 0.7726,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.61,
1171
+ "learning_rate": 0.000525261029523156,
1172
+ "loss": 0.7532,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.61,
1177
+ "learning_rate": 0.0005239759808534055,
1178
+ "loss": 0.6978,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.61,
1183
+ "learning_rate": 0.0005226859368510599,
1184
+ "loss": 0.7182,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.61,
1189
+ "learning_rate": 0.0005213909299029368,
1190
+ "loss": 0.6776,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.62,
1195
+ "learning_rate": 0.0005200909925204501,
1196
+ "loss": 0.7447,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.62,
1201
+ "learning_rate": 0.0005187861573387928,
1202
+ "loss": 0.7298,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.62,
1207
+ "learning_rate": 0.0005174764571161185,
1208
+ "loss": 0.6833,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 0.63,
1213
+ "learning_rate": 0.0005161619247327185,
1214
+ "loss": 0.7518,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 0.63,
1219
+ "learning_rate": 0.0005148425931901961,
1220
+ "loss": 0.7429,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 0.63,
1225
+ "learning_rate": 0.0005135184956106394,
1226
+ "loss": 0.763,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 0.64,
1231
+ "learning_rate": 0.000512189665235788,
1232
+ "loss": 0.7682,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 0.64,
1237
+ "learning_rate": 0.0005108561354261996,
1238
+ "loss": 0.7063,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 0.64,
1243
+ "learning_rate": 0.0005095179396604121,
1244
+ "loss": 0.6956,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 0.65,
1249
+ "learning_rate": 0.0005081751115341034,
1250
+ "loss": 0.7434,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 0.65,
1255
+ "learning_rate": 0.0005068276847592474,
1256
+ "loss": 0.6673,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 0.65,
1261
+ "learning_rate": 0.0005054756931632682,
1262
+ "loss": 0.6448,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 0.65,
1267
+ "learning_rate": 0.0005041191706881909,
1268
+ "loss": 0.7095,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 0.66,
1273
+ "learning_rate": 0.0005027581513897888,
1274
+ "loss": 0.673,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 0.66,
1279
+ "learning_rate": 0.000501392669436729,
1280
+ "loss": 0.6363,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 0.66,
1285
+ "learning_rate": 0.0005000227591097145,
1286
+ "loss": 0.6711,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 0.67,
1291
+ "learning_rate": 0.0004986484548006237,
1292
+ "loss": 0.6375,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 0.67,
1297
+ "learning_rate": 0.0004972697910116468,
1298
+ "loss": 0.7466,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 0.67,
1303
+ "learning_rate": 0.0004958868023544192,
1304
+ "loss": 0.7147,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 0.68,
1309
+ "learning_rate": 0.0004944995235491534,
1310
+ "loss": 0.714,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 0.68,
1315
+ "learning_rate": 0.0004931079894237669,
1316
+ "loss": 0.7377,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 0.68,
1321
+ "learning_rate": 0.0004917122349130078,
1322
+ "loss": 0.7087,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 0.69,
1327
+ "learning_rate": 0.000490312295057578,
1328
+ "loss": 0.6716,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 0.69,
1333
+ "learning_rate": 0.0004889082050032529,
1334
+ "loss": 0.7298,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 0.69,
1339
+ "learning_rate": 0.0004875,
1340
+ "loss": 0.6557,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 0.7,
1345
+ "learning_rate": 0.0004860877154010932,
1346
+ "loss": 0.7042,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 0.7,
1351
+ "learning_rate": 0.00048467138666222534,
1352
+ "loss": 0.6617,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 0.7,
1357
+ "learning_rate": 0.00048325104934061853,
1358
+ "loss": 0.7019,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 0.7,
1363
+ "learning_rate": 0.00048182673909413103,
1364
+ "loss": 0.6756,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 0.71,
1369
+ "learning_rate": 0.00048039849168036205,
1370
+ "loss": 0.709,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 0.71,
1375
+ "learning_rate": 0.00047896634295575434,
1376
+ "loss": 0.7434,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 0.71,
1381
+ "learning_rate": 0.00047753032887469385,
1382
+ "loss": 0.7533,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 0.72,
1387
+ "learning_rate": 0.0004760904854886072,
1388
+ "loss": 0.7019,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 0.72,
1393
+ "learning_rate": 0.0004746468489450562,
1394
+ "loss": 0.6852,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 0.72,
1399
+ "learning_rate": 0.0004731994554868307,
1400
+ "loss": 0.7228,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 0.73,
1405
+ "learning_rate": 0.000471748341451039,
1406
+ "loss": 0.7513,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 0.73,
1411
+ "learning_rate": 0.0004702935432681949,
1412
+ "loss": 0.6896,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 0.73,
1417
+ "learning_rate": 0.0004688350974613038,
1418
+ "loss": 0.6815,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 0.74,
1423
+ "learning_rate": 0.0004673730406449449,
1424
+ "loss": 0.7682,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 0.74,
1429
+ "learning_rate": 0.00046590740952435323,
1430
+ "loss": 0.7025,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 0.74,
1435
+ "learning_rate": 0.0004644382408944968,
1436
+ "loss": 0.6662,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 0.75,
1441
+ "learning_rate": 0.00046296557163915395,
1442
+ "loss": 0.7541,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 0.75,
1447
+ "learning_rate": 0.0004614894387299867,
1448
+ "loss": 0.7336,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 0.75,
1453
+ "learning_rate": 0.0004600098792256131,
1454
+ "loss": 0.6618,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 0.75,
1459
+ "learning_rate": 0.0004585269302706762,
1460
+ "loss": 0.6729,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 0.76,
1465
+ "learning_rate": 0.0004570406290949121,
1466
+ "loss": 0.7327,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 0.76,
1471
+ "learning_rate": 0.0004555510130122151,
1472
+ "loss": 0.6778,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 0.76,
1477
+ "learning_rate": 0.0004540581194197008,
1478
+ "loss": 0.6219,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 0.77,
1483
+ "learning_rate": 0.00045256198579676755,
1484
+ "loss": 0.6984,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 0.77,
1489
+ "learning_rate": 0.000451062649704155,
1490
+ "loss": 0.637,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 0.77,
1495
+ "learning_rate": 0.000449560148783002,
1496
+ "loss": 0.658,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 0.78,
1501
+ "learning_rate": 0.0004480545207539004,
1502
+ "loss": 0.7305,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 0.78,
1507
+ "learning_rate": 0.0004465458034159491,
1508
+ "loss": 0.6788,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 0.78,
1513
+ "learning_rate": 0.00044503403464580475,
1514
+ "loss": 0.7096,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 0.79,
1519
+ "learning_rate": 0.00044351925239673087,
1520
+ "loss": 0.7108,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 0.79,
1525
+ "learning_rate": 0.0004420014946976447,
1526
+ "loss": 0.6518,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 0.79,
1531
+ "learning_rate": 0.00044048079965216294,
1532
+ "loss": 0.7262,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 0.8,
1537
+ "learning_rate": 0.0004389572054376452,
1538
+ "loss": 0.6988,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 0.8,
1543
+ "learning_rate": 0.00043743075030423475,
1544
+ "loss": 0.6637,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 0.8,
1549
+ "learning_rate": 0.0004359014725738994,
1550
+ "loss": 0.7055,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 0.8,
1555
+ "learning_rate": 0.00043436941063946843,
1556
+ "loss": 0.7179,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 0.81,
1561
+ "learning_rate": 0.0004328346029636694,
1562
+ "loss": 0.6955,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 0.81,
1567
+ "learning_rate": 0.0004312970880781621,
1568
+ "loss": 0.6749,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 0.81,
1573
+ "learning_rate": 0.0004297569045825713,
1574
+ "loss": 0.6711,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 0.82,
1579
+ "learning_rate": 0.00042821409114351803,
1580
+ "loss": 0.6366,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 0.82,
1585
+ "learning_rate": 0.00042666868649364844,
1586
+ "loss": 0.7144,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 0.82,
1591
+ "learning_rate": 0.0004251207294306617,
1592
+ "loss": 0.656,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 0.83,
1597
+ "learning_rate": 0.00042357025881633535,
1598
+ "loss": 0.6803,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 0.83,
1603
+ "learning_rate": 0.00042201731357555073,
1604
+ "loss": 0.7044,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 0.83,
1609
+ "learning_rate": 0.0004204619326953149,
1610
+ "loss": 0.6488,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 0.84,
1615
+ "learning_rate": 0.00041890415522378223,
1616
+ "loss": 0.6928,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 0.84,
1621
+ "learning_rate": 0.00041734402026927394,
1622
+ "loss": 0.6764,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 0.84,
1627
+ "learning_rate": 0.00041578156699929636,
1628
+ "loss": 0.6278,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 0.85,
1633
+ "learning_rate": 0.0004142168346395577,
1634
+ "loss": 0.691,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 0.85,
1639
+ "learning_rate": 0.0004126498624729829,
1640
+ "loss": 0.6865,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 0.85,
1645
+ "learning_rate": 0.000411080689838728,
1646
+ "loss": 0.6715,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 0.85,
1651
+ "learning_rate": 0.00040950935613119226,
1652
+ "loss": 0.6563,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 0.86,
1657
+ "learning_rate": 0.00040793590079902885,
1658
+ "loss": 0.7608,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 0.86,
1663
+ "learning_rate": 0.00040636036334415487,
1664
+ "loss": 0.6189,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 0.86,
1669
+ "learning_rate": 0.0004047827833207597,
1670
+ "loss": 0.6981,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 0.87,
1675
+ "learning_rate": 0.0004032032003343117,
1676
+ "loss": 0.644,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 0.87,
1681
+ "learning_rate": 0.0004016216540405639,
1682
+ "loss": 0.7286,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 0.87,
1687
+ "learning_rate": 0.0004000381841445586,
1688
+ "loss": 0.6694,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 0.88,
1693
+ "learning_rate": 0.00039845283039963093,
1694
+ "loss": 0.7204,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 0.88,
1699
+ "learning_rate": 0.0003968656326064099,
1700
+ "loss": 0.7042,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 0.88,
1705
+ "learning_rate": 0.00039527663061181983,
1706
+ "loss": 0.712,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 0.89,
1711
+ "learning_rate": 0.00039368586430808014,
1712
+ "loss": 0.7179,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 0.89,
1717
+ "learning_rate": 0.00039209337363170347,
1718
+ "loss": 0.6903,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 0.89,
1723
+ "learning_rate": 0.00039049919856249315,
1724
+ "loss": 0.6924,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 0.9,
1729
+ "learning_rate": 0.0003889033791225395,
1730
+ "loss": 0.6713,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 0.9,
1735
+ "learning_rate": 0.000387305955375215,
1736
+ "loss": 0.7852,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 0.9,
1741
+ "learning_rate": 0.0003857069674241689,
1742
+ "loss": 0.6517,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 0.9,
1747
+ "learning_rate": 0.00038410645541232,
1748
+ "loss": 0.6764,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 0.91,
1753
+ "learning_rate": 0.0003825044595208488,
1754
+ "loss": 0.7183,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 0.91,
1759
+ "learning_rate": 0.000380901019968189,
1760
+ "loss": 0.6826,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 0.91,
1765
+ "learning_rate": 0.0003792961770090178,
1766
+ "loss": 0.6936,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 0.92,
1771
+ "learning_rate": 0.0003776899709332449,
1772
+ "loss": 0.718,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 0.92,
1777
+ "learning_rate": 0.00037608244206500176,
1778
+ "loss": 0.6795,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 0.92,
1783
+ "learning_rate": 0.00037447363076162853,
1784
+ "loss": 0.6517,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 0.93,
1789
+ "learning_rate": 0.0003728635774126613,
1790
+ "loss": 0.6849,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 0.93,
1795
+ "learning_rate": 0.0003712523224388177,
1796
+ "loss": 0.6663,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 0.93,
1801
+ "learning_rate": 0.00036963990629098264,
1802
+ "loss": 0.6585,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 0.94,
1807
+ "learning_rate": 0.0003680263694491925,
1808
+ "loss": 0.7054,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 0.94,
1813
+ "learning_rate": 0.00036641175242161907,
1814
+ "loss": 0.6662,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 0.94,
1819
+ "learning_rate": 0.000364796095743552,
1820
+ "loss": 0.6306,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 0.95,
1825
+ "learning_rate": 0.00036317943997638187,
1826
+ "loss": 0.6544,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 0.95,
1831
+ "learning_rate": 0.0003615618257065817,
1832
+ "loss": 0.7078,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 0.95,
1837
+ "learning_rate": 0.00035994329354468763,
1838
+ "loss": 0.6511,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 0.95,
1843
+ "learning_rate": 0.00035832388412427983,
1844
+ "loss": 0.668,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 0.96,
1849
+ "learning_rate": 0.00035670363810096214,
1850
+ "loss": 0.678,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 0.96,
1855
+ "learning_rate": 0.0003550825961513418,
1856
+ "loss": 0.6596,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 0.96,
1861
+ "learning_rate": 0.00035346079897200736,
1862
+ "loss": 0.674,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 0.97,
1867
+ "learning_rate": 0.00035183828727850804,
1868
+ "loss": 0.6888,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 0.97,
1873
+ "learning_rate": 0.0003502151018043309,
1874
+ "loss": 0.6864,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 0.97,
1879
+ "learning_rate": 0.0003485912832998785,
1880
+ "loss": 0.6576,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 0.98,
1885
+ "learning_rate": 0.0003469668725314458,
1886
+ "loss": 0.6989,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 0.98,
1891
+ "learning_rate": 0.0003453419102801962,
1892
+ "loss": 0.6519,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 0.98,
1897
+ "learning_rate": 0.0003437164373411389,
1898
+ "loss": 0.6754,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 0.99,
1903
+ "learning_rate": 0.00034209049452210347,
1904
+ "loss": 0.6706,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 0.99,
1909
+ "learning_rate": 0.0003404641226427163,
1910
+ "loss": 0.7295,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 0.99,
1915
+ "learning_rate": 0.000338837362533375,
1916
+ "loss": 0.7137,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 0.99,
1921
+ "learning_rate": 0.0003372102550342242,
1922
+ "loss": 0.7131,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 1.0,
1927
+ "learning_rate": 0.0003355828409941296,
1928
+ "loss": 0.6404,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 1.0,
1933
+ "learning_rate": 0.00033395516126965267,
1934
+ "loss": 0.6896,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 1.0,
1939
+ "learning_rate": 0.0003323272567240249,
1940
+ "loss": 0.5439,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 1.01,
1945
+ "learning_rate": 0.0003306991682261223,
1946
+ "loss": 0.5435,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 1.01,
1951
+ "learning_rate": 0.0003290709366494386,
1952
+ "loss": 0.5861,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 1.01,
1957
+ "learning_rate": 0.0003274426028710596,
1958
+ "loss": 0.5743,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 1.02,
1963
+ "learning_rate": 0.0003258142077706373,
1964
+ "loss": 0.4928,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 1.02,
1969
+ "learning_rate": 0.0003241857922293627,
1970
+ "loss": 0.5045,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 1.02,
1975
+ "learning_rate": 0.00032255739712894036,
1976
+ "loss": 0.5733,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 1.03,
1981
+ "learning_rate": 0.00032092906335056147,
1982
+ "loss": 0.517,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 1.03,
1987
+ "learning_rate": 0.00031930083177387765,
1988
+ "loss": 0.5836,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 1.03,
1993
+ "learning_rate": 0.0003176727432759751,
1994
+ "loss": 0.5745,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 1.04,
1999
+ "learning_rate": 0.00031604483873034735,
2000
+ "loss": 0.5165,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 1.04,
2005
+ "learning_rate": 0.0003144171590058705,
2006
+ "loss": 0.5716,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 1.04,
2011
+ "learning_rate": 0.0003127897449657758,
2012
+ "loss": 0.5605,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 1.04,
2017
+ "learning_rate": 0.0003111626374666249,
2018
+ "loss": 0.5454,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 1.05,
2023
+ "learning_rate": 0.00030953587735728377,
2024
+ "loss": 0.5743,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 1.05,
2029
+ "learning_rate": 0.0003079095054778965,
2030
+ "loss": 0.5874,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 1.05,
2035
+ "learning_rate": 0.0003062835626588612,
2036
+ "loss": 0.5518,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 1.06,
2041
+ "learning_rate": 0.0003046580897198038,
2042
+ "loss": 0.5589,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 1.06,
2047
+ "learning_rate": 0.00030303312746855434,
2048
+ "loss": 0.5639,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 1.06,
2053
+ "learning_rate": 0.0003014087167001215,
2054
+ "loss": 0.5249,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 1.07,
2059
+ "learning_rate": 0.00029978489819566903,
2060
+ "loss": 0.5328,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 1.07,
2065
+ "learning_rate": 0.000298161712721492,
2066
+ "loss": 0.5494,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 1.07,
2071
+ "learning_rate": 0.00029653920102799266,
2072
+ "loss": 0.5593,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 1.08,
2077
+ "learning_rate": 0.00029491740384865835,
2078
+ "loss": 0.5149,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 1.08,
2083
+ "learning_rate": 0.00029329636189903783,
2084
+ "loss": 0.5434,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 1.08,
2089
+ "learning_rate": 0.00029167611587572014,
2090
+ "loss": 0.5099,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 1.09,
2095
+ "learning_rate": 0.0002900567064553124,
2096
+ "loss": 0.5175,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 1.09,
2101
+ "learning_rate": 0.00028843817429341826,
2102
+ "loss": 0.5598,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 1.09,
2107
+ "learning_rate": 0.00028682056002361816,
2108
+ "loss": 0.524,
2109
+ "step": 350
2110
+ }
2111
+ ],
2112
+ "logging_steps": 1,
2113
+ "max_steps": 640,
2114
+ "num_input_tokens_seen": 0,
2115
+ "num_train_epochs": 2,
2116
+ "save_steps": 50,
2117
+ "total_flos": 9.080037171088589e+17,
2118
+ "train_batch_size": 4,
2119
+ "trial_name": null,
2120
+ "trial_params": null
2121
+ }
checkpoint-350/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d688198fe54ccac5c0a98d11fb9e7224690ace94f7e483ba1d16db91cf33a5c4
3
+ size 4664
checkpoint-50/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: NousResearch/Llama-2-13b-hf
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-50/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "NousResearch/Llama-2-13b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 128,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "o_proj",
23
+ "up_proj",
24
+ "k_proj",
25
+ "gate_proj",
26
+ "down_proj",
27
+ "v_proj",
28
+ "q_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }