lmazzon70 commited on
Commit
2eec64d
1 Parent(s): 10962cc

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: videomae-base-ssv2-finetuned-rwf2000-epochs6
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # videomae-base-ssv2-finetuned-rwf2000-epochs6
16
+
17
+ This model is a fine-tuned version of [MCG-NJU/videomae-base-ssv2](https://huggingface.co/MCG-NJU/videomae-base-ssv2) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.7920
20
+ - Accuracy: 0.4357
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 2
41
+ - eval_batch_size: 2
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_ratio: 0.1
46
+ - training_steps: 4800
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
+ | 0.841 | 0.17 | 800 | 0.7114 | 0.755 |
53
+ | 0.8781 | 1.17 | 1600 | 1.6078 | 0.5925 |
54
+ | 0.1951 | 2.17 | 2400 | 1.9190 | 0.5962 |
55
+ | 0.2094 | 3.17 | 3200 | 0.9991 | 0.7588 |
56
+ | 0.3594 | 4.17 | 4000 | 1.0306 | 0.7937 |
57
+ | 0.0019 | 5.17 | 4800 | 1.0982 | 0.7775 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - Transformers 4.25.1
63
+ - Pytorch 1.13.1+cu117
64
+ - Datasets 2.8.0
65
+ - Tokenizers 0.13.2