llvictorll's picture
add gradio app
8513f87 verified
import importlib
import torch
import torch.nn.functional as F
import pytorch_lightning as pl
from Models.modules.diffusionmodules.model import Encoder, Decoder
from Models.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
from Models.modules.vqvae.quantize import GumbelQuantize
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def instantiate_from_config(config):
if not "target" in config:
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
class VQModel(pl.LightningModule):
def __init__(self,
ddconfig,
lossconfig,
n_embed,
embed_dim,
ckpt_path=None,
ignore_keys=[],
image_key="image",
colorize_nlabels=None,
monitor=None,
remap=None,
sane_index_shape=False, # tell vector quantizer to return indices as bhw
):
super().__init__()
self.image_key = image_key
self.encoder = Encoder(**ddconfig)
self.decoder = Decoder(**ddconfig)
# self.loss = instantiate_from_config(lossconfig)
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
remap=remap, sane_index_shape=sane_index_shape)
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
self.image_key = image_key
if colorize_nlabels is not None:
assert type(colorize_nlabels) == int
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
if monitor is not None:
self.monitor = monitor
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
self.load_state_dict(sd, strict=False)
print(f"Restored from {path}")
def encode(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
quant, emb_loss, info = self.quantize(h)
return quant, emb_loss, info
def decode(self, quant):
quant = self.post_quant_conv(quant)
dec = self.decoder(quant)
return dec
def decode_code(self, code_b):
quant_b = self.quantize.get_codebook_entry(code_b.view(-1), (code_b.size(0), code_b.size(1), code_b.size(2), 256))
dec = self.decode(quant_b)
return dec
def forward(self, input):
quant, diff, _ = self.encode(input)
dec = self.decode(quant)
return dec, diff
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
return x.float()
def training_step(self, batch, batch_idx, optimizer_idx):
x = self.get_input(batch, self.image_key)
xrec, qloss = self(x)
if optimizer_idx == 0:
# autoencode
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
last_layer=self.get_last_layer(), split="train")
self.log("train/aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
return aeloss
if optimizer_idx == 1:
# discriminator
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
last_layer=self.get_last_layer(), split="train")
self.log("train/discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
return discloss
def validation_step(self, batch, batch_idx):
x = self.get_input(batch, self.image_key)
xrec, qloss = self(x)
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, self.global_step,
last_layer=self.get_last_layer(), split="val")
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, self.global_step,
last_layer=self.get_last_layer(), split="val")
rec_loss = log_dict_ae["val/rec_loss"]
self.log("val/rec_loss", rec_loss,
prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
self.log("val/aeloss", aeloss,
prog_bar=True, logger=True, on_step=True, on_epoch=True, sync_dist=True)
self.log_dict(log_dict_ae)
self.log_dict(log_dict_disc)
return self.log_dict
def configure_optimizers(self):
lr = self.learning_rate
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
list(self.decoder.parameters())+
list(self.quantize.parameters())+
list(self.quant_conv.parameters())+
list(self.post_quant_conv.parameters()),
lr=lr, betas=(0.5, 0.9))
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
lr=lr, betas=(0.5, 0.9))
return [opt_ae, opt_disc], []
def get_last_layer(self):
return self.decoder.conv_out.weight
def log_images(self, batch, **kwargs):
log = dict()
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
xrec, _ = self(x)
if x.shape[1] > 3:
# colorize with random projection
assert xrec.shape[1] > 3
x = self.to_rgb(x)
xrec = self.to_rgb(xrec)
log["inputs"] = x
log["reconstructions"] = xrec
return log
def to_rgb(self, x):
assert self.image_key == "segmentation"
if not hasattr(self, "colorize"):
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
x = F.conv2d(x, weight=self.colorize)
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
return x
class GumbelVQ(VQModel):
def __init__(self,
ddconfig,
lossconfig,
n_embed,
embed_dim,
temperature_scheduler_config,
ckpt_path=None,
ignore_keys=[],
image_key="image",
colorize_nlabels=None,
monitor=None,
kl_weight=1e-8,
remap=None,
):
z_channels = ddconfig["z_channels"]
super().__init__(ddconfig,
lossconfig,
n_embed,
embed_dim,
ckpt_path=None,
ignore_keys=ignore_keys,
image_key=image_key,
colorize_nlabels=colorize_nlabels,
monitor=monitor,
)
# self.loss.n_classes = n_embed
self.vocab_size = n_embed
self.quantize = GumbelQuantize(z_channels, embed_dim,
n_embed=n_embed,
kl_weight=kl_weight, temp_init=1.0,
remap=remap)
# self.temperature_scheduler = instantiate_from_config(temperature_scheduler_config) # annealing of temp
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
def temperature_scheduling(self):
self.quantize.temperature = self.temperature_scheduler(self.global_step)
def encode_to_prequant(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
return h
def decode_code(self, code_b):
quant_b = self.quantize.get_codebook_entry(code_b.view(-1), (code_b.size(0), 32, 32, 8192))
dec = self.decode(quant_b)
return dec
def training_step(self, batch, batch_idx, optimizer_idx):
self.temperature_scheduling()
x = self.get_input(batch, self.image_key)
xrec, qloss = self(x)
if optimizer_idx == 0:
# autoencoder
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
last_layer=self.get_last_layer(), split="train")
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
self.log("temperature", self.quantize.temperature, prog_bar=False, logger=True, on_step=True, on_epoch=True)
return aeloss
if optimizer_idx == 1:
# discriminator
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
last_layer=self.get_last_layer(), split="train")
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
return discloss
def validation_step(self, batch, batch_idx):
x = self.get_input(batch, self.image_key)
xrec, qloss = self(x, return_pred_indices=True)
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0, self.global_step,
last_layer=self.get_last_layer(), split="val")
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1, self.global_step,
last_layer=self.get_last_layer(), split="val")
rec_loss = log_dict_ae["val/rec_loss"]
self.log("val/rec_loss", rec_loss,
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
self.log("val/aeloss", aeloss,
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
self.log_dict(log_dict_ae)
self.log_dict(log_dict_disc)
return self.log_dict
def log_images(self, batch, **kwargs):
log = dict()
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
# encode
h = self.encoder(x)
h = self.quant_conv(h)
quant, _, _ = self.quantize(h)
# decode
x_rec = self.decode(quant)
log["inputs"] = x
log["reconstructions"] = x_rec
return log
def reco(self, x): # , batch, **kwargs):
# log = dict()
# x = self.get_input(batch, self.image_key)
# x = x.to(self.device)
# encode
h = self.encoder(x)
# print(h, h.size())
h = self.quant_conv(h)
quant, _, _ = self.quantize(h)
print(quant, quant.size())
exit()
# decode
x_rec = self.decode(quant)
# log["inputs"] = x
# log["reconstructions"] = x_rec
return x_rec