End of training
Browse files- README.md +21 -1
- all_results.json +24 -24
- eval_results.json +20 -20
- train_results.json +4 -4
- trainer_state.json +4 -4
README.md
CHANGED
@@ -3,6 +3,8 @@ license: mit
|
|
3 |
base_model: roberta-base
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
model-index:
|
7 |
- name: ner-2-roberta-base
|
8 |
results: []
|
@@ -13,7 +15,25 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
# ner-2-roberta-base
|
15 |
|
16 |
-
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
## Model description
|
19 |
|
|
|
3 |
base_model: roberta-base
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- lltala/e-ner-roberta-base
|
8 |
model-index:
|
9 |
- name: ner-2-roberta-base
|
10 |
results: []
|
|
|
15 |
|
16 |
# ner-2-roberta-base
|
17 |
|
18 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the lltala/e-ner-roberta-base dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0798
|
21 |
+
- Loc Precision: 0.625
|
22 |
+
- Loc Recall: 0.7216
|
23 |
+
- Loc F1: 0.6699
|
24 |
+
- Loc Number: 97
|
25 |
+
- Org Precision: 0.8401
|
26 |
+
- Org Recall: 0.6716
|
27 |
+
- Org F1: 0.7465
|
28 |
+
- Org Number: 673
|
29 |
+
- Per Precision: 0.9425
|
30 |
+
- Per Recall: 0.9762
|
31 |
+
- Per F1: 0.9591
|
32 |
+
- Per Number: 84
|
33 |
+
- Overall Precision: 0.8195
|
34 |
+
- Overall Recall: 0.7073
|
35 |
+
- Overall F1: 0.7593
|
36 |
+
- Overall Accuracy: 0.9854
|
37 |
|
38 |
## Model description
|
39 |
|
all_results.json
CHANGED
@@ -1,30 +1,30 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"eval_LOC_f1": 0.
|
4 |
-
"eval_LOC_number":
|
5 |
-
"eval_LOC_precision": 0.
|
6 |
-
"eval_LOC_recall": 0.
|
7 |
-
"eval_ORG_f1": 0.
|
8 |
-
"eval_ORG_number":
|
9 |
-
"eval_ORG_precision": 0.
|
10 |
-
"eval_ORG_recall": 0.
|
11 |
-
"eval_PER_f1": 0.
|
12 |
-
"eval_PER_number":
|
13 |
-
"eval_PER_precision": 0.
|
14 |
-
"eval_PER_recall":
|
15 |
-
"eval_loss": 0.
|
16 |
-
"eval_overall_accuracy": 0.
|
17 |
-
"eval_overall_f1": 0.
|
18 |
-
"eval_overall_precision": 0.
|
19 |
-
"eval_overall_recall": 0.
|
20 |
-
"eval_runtime":
|
21 |
"eval_samples": 90,
|
22 |
-
"eval_samples_per_second":
|
23 |
-
"eval_steps_per_second": 1.
|
24 |
"total_flos": 658497592811520.0,
|
25 |
-
"train_loss": 0.
|
26 |
-
"train_runtime":
|
27 |
"train_samples": 840,
|
28 |
-
"train_samples_per_second":
|
29 |
-
"train_steps_per_second": 0.
|
30 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"eval_LOC_f1": 0.6698564593301435,
|
4 |
+
"eval_LOC_number": 97,
|
5 |
+
"eval_LOC_precision": 0.625,
|
6 |
+
"eval_LOC_recall": 0.7216494845360825,
|
7 |
+
"eval_ORG_f1": 0.7464905037159372,
|
8 |
+
"eval_ORG_number": 673,
|
9 |
+
"eval_ORG_precision": 0.8401486988847584,
|
10 |
+
"eval_ORG_recall": 0.6716196136701337,
|
11 |
+
"eval_PER_f1": 0.95906432748538,
|
12 |
+
"eval_PER_number": 84,
|
13 |
+
"eval_PER_precision": 0.9425287356321839,
|
14 |
+
"eval_PER_recall": 0.9761904761904762,
|
15 |
+
"eval_loss": 0.07983002066612244,
|
16 |
+
"eval_overall_accuracy": 0.9853830393283693,
|
17 |
+
"eval_overall_f1": 0.7592708988057825,
|
18 |
+
"eval_overall_precision": 0.819538670284939,
|
19 |
+
"eval_overall_recall": 0.7072599531615925,
|
20 |
+
"eval_runtime": 4.4768,
|
21 |
"eval_samples": 90,
|
22 |
+
"eval_samples_per_second": 20.104,
|
23 |
+
"eval_steps_per_second": 1.34,
|
24 |
"total_flos": 658497592811520.0,
|
25 |
+
"train_loss": 0.05426802725162146,
|
26 |
+
"train_runtime": 235.8554,
|
27 |
"train_samples": 840,
|
28 |
+
"train_samples_per_second": 10.685,
|
29 |
+
"train_steps_per_second": 0.674
|
30 |
}
|
eval_results.json
CHANGED
@@ -1,24 +1,24 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
-
"eval_LOC_f1": 0.
|
4 |
-
"eval_LOC_number":
|
5 |
-
"eval_LOC_precision": 0.
|
6 |
-
"eval_LOC_recall": 0.
|
7 |
-
"eval_ORG_f1": 0.
|
8 |
-
"eval_ORG_number":
|
9 |
-
"eval_ORG_precision": 0.
|
10 |
-
"eval_ORG_recall": 0.
|
11 |
-
"eval_PER_f1": 0.
|
12 |
-
"eval_PER_number":
|
13 |
-
"eval_PER_precision": 0.
|
14 |
-
"eval_PER_recall":
|
15 |
-
"eval_loss": 0.
|
16 |
-
"eval_overall_accuracy": 0.
|
17 |
-
"eval_overall_f1": 0.
|
18 |
-
"eval_overall_precision": 0.
|
19 |
-
"eval_overall_recall": 0.
|
20 |
-
"eval_runtime":
|
21 |
"eval_samples": 90,
|
22 |
-
"eval_samples_per_second":
|
23 |
-
"eval_steps_per_second": 1.
|
24 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
+
"eval_LOC_f1": 0.6698564593301435,
|
4 |
+
"eval_LOC_number": 97,
|
5 |
+
"eval_LOC_precision": 0.625,
|
6 |
+
"eval_LOC_recall": 0.7216494845360825,
|
7 |
+
"eval_ORG_f1": 0.7464905037159372,
|
8 |
+
"eval_ORG_number": 673,
|
9 |
+
"eval_ORG_precision": 0.8401486988847584,
|
10 |
+
"eval_ORG_recall": 0.6716196136701337,
|
11 |
+
"eval_PER_f1": 0.95906432748538,
|
12 |
+
"eval_PER_number": 84,
|
13 |
+
"eval_PER_precision": 0.9425287356321839,
|
14 |
+
"eval_PER_recall": 0.9761904761904762,
|
15 |
+
"eval_loss": 0.07983002066612244,
|
16 |
+
"eval_overall_accuracy": 0.9853830393283693,
|
17 |
+
"eval_overall_f1": 0.7592708988057825,
|
18 |
+
"eval_overall_precision": 0.819538670284939,
|
19 |
+
"eval_overall_recall": 0.7072599531615925,
|
20 |
+
"eval_runtime": 4.4768,
|
21 |
"eval_samples": 90,
|
22 |
+
"eval_samples_per_second": 20.104,
|
23 |
+
"eval_steps_per_second": 1.34
|
24 |
}
|
train_results.json
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
"total_flos": 658497592811520.0,
|
4 |
-
"train_loss": 0.
|
5 |
-
"train_runtime":
|
6 |
"train_samples": 840,
|
7 |
-
"train_samples_per_second":
|
8 |
-
"train_steps_per_second": 0.
|
9 |
}
|
|
|
1 |
{
|
2 |
"epoch": 3.0,
|
3 |
"total_flos": 658497592811520.0,
|
4 |
+
"train_loss": 0.05426802725162146,
|
5 |
+
"train_runtime": 235.8554,
|
6 |
"train_samples": 840,
|
7 |
+
"train_samples_per_second": 10.685,
|
8 |
+
"train_steps_per_second": 0.674
|
9 |
}
|
trainer_state.json
CHANGED
@@ -12,10 +12,10 @@
|
|
12 |
"epoch": 3.0,
|
13 |
"step": 159,
|
14 |
"total_flos": 658497592811520.0,
|
15 |
-
"train_loss": 0.
|
16 |
-
"train_runtime":
|
17 |
-
"train_samples_per_second":
|
18 |
-
"train_steps_per_second": 0.
|
19 |
}
|
20 |
],
|
21 |
"logging_steps": 500,
|
|
|
12 |
"epoch": 3.0,
|
13 |
"step": 159,
|
14 |
"total_flos": 658497592811520.0,
|
15 |
+
"train_loss": 0.05426802725162146,
|
16 |
+
"train_runtime": 235.8554,
|
17 |
+
"train_samples_per_second": 10.685,
|
18 |
+
"train_steps_per_second": 0.674
|
19 |
}
|
20 |
],
|
21 |
"logging_steps": 500,
|