doberst commited on
Commit
2f78dbe
1 Parent(s): 5c4581b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -1,20 +1,28 @@
1
  ---
2
- license: apache-2.0
3
  ---
4
 
5
  # Model Card for Model ID
6
 
7
  <!-- Provide a quick summary of what the model is/does. -->
8
 
9
- **dragon-yi-qa-tool** is a Q4_K_M GGUF quantized version of the DRAGON Yi model series, providing a fast, small inference implementation.
10
 
 
 
 
 
 
 
 
11
 
12
  Load in your favorite GGUF inference engine, or try with llmware as follows:
13
 
14
- from llmware.models import ModelCatalog
 
 
15
 
16
- qa_tool = ModelCatalog().load_model("llmware/dragon-yi-qa-tool")
17
- response = qa_tool.inference(question, text_sample)
18
 
19
 
20
  ### Model Description
@@ -24,17 +32,9 @@ Load in your favorite GGUF inference engine, or try with llmware as follows:
24
  - **Developed by:** llmware
25
  - **Model type:** GGUF
26
  - **Language(s) (NLP):** English
27
- - **License:** Yi Community License
28
- - **Quantized from model:** llmware/dragon-yi-6b (finetuned yi-6b-base)
29
-
30
- ## Uses
31
-
32
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
33
-
34
- All of the DRAGON models use the following prompt template:
35
-
36
- "<human> " + text + "\n" + question + "\n<bot>: "
37
-
38
 
39
  ## Model Card Contact
40
 
 
1
  ---
2
+ license: llama2
3
  ---
4
 
5
  # Model Card for Model ID
6
 
7
  <!-- Provide a quick summary of what the model is/does. -->
8
 
9
+ **dragon-llama-answer-tool** is a quantized version of DRAGON Llama 7B, with 4_K_M GGUF quantization, providing a fast, small inference implementation for use on CPUs.
10
 
11
+ [**DRAGON LLama 7B**](https://huggingface.co/llmware/dragon-llama-7b-v0) is a fact-based question-answering model, optimized for complex business documents.
12
+
13
+ We are providing as a separate repository that can be pulled directly:
14
+
15
+ from huggingface_hub import snapshot_download
16
+ snapshot_download("llmware/dragon-llama-answer-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
17
+
18
 
19
  Load in your favorite GGUF inference engine, or try with llmware as follows:
20
 
21
+ from llmware.models import ModelCatalog
22
+ model = ModelCatalog().load_model("llmware/dragon-llama-answer-tool")
23
+ response = model.inference(query, text_sample)
24
 
25
+ Note: please review [**config.json**](https://huggingface.co/llmware/dragon-llama-answer-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
 
26
 
27
 
28
  ### Model Description
 
32
  - **Developed by:** llmware
33
  - **Model type:** GGUF
34
  - **Language(s) (NLP):** English
35
+ - **License:** Llama 2 Community License
36
+ - **Quantized from model:** [llmware/dragon-llama](https://huggingface.co/llmware/dragon-llama-7b-v0/)
37
+
 
 
 
 
 
 
 
 
38
 
39
  ## Model Card Contact
40