doberst commited on
Commit
c53a9ef
1 Parent(s): d968942

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -1,16 +1,16 @@
1
  ---
2
  license: apache-2.0
3
  inference: false
4
- tags: [green, llmware-rag, p3,ov]
5
  ---
6
 
7
- # bling-phi-3-ov
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
11
- **bling-phi-3-ov** is an OpenVino int4 quantized version of BLING Phi-3, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
- [**bling-phi-3**](https://huggingface.co/llmware/bling-phi-3) is a fact-based question-answering model, optimized for complex business documents.
14
 
15
  Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
16
 
@@ -20,9 +20,9 @@ Looking for AI PC solutions and demos, contact us at [llmware](https://www.llmwa
20
  ### Model Description
21
 
22
  - **Developed by:** llmware
23
- - **Model type:** phi3
24
- - **Parameters:** 3.8 billion
25
- - **Model Parent:** llmware/bling-phi-3
26
  - **Language(s) (NLP):** English
27
  - **License:** Apache 2.0
28
  - **Uses:** Fact-based question-answering
 
1
  ---
2
  license: apache-2.0
3
  inference: false
4
+ tags: [green, llmware-rag, p9,ov]
5
  ---
6
 
7
+ # dragon-yi-9b-ov
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
11
+ **dragon-yi-9b-ov** is an OpenVino int4 quantized version of DRAGON YI 9B, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
+ [**dragon-yi-9b**](https://huggingface.co/llmware/dragon-yi-9b) is a fact-based question-answering model, optimized for complex business documents.
14
 
15
  Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
16
 
 
20
  ### Model Description
21
 
22
  - **Developed by:** llmware
23
+ - **Model type:** yi-1.5v-9b
24
+ - **Parameters:** 8.8 billion
25
+ - **Model Parent:** llmware/dragon-yi-9b
26
  - **Language(s) (NLP):** English
27
  - **License:** Apache 2.0
28
  - **Uses:** Fact-based question-answering