doberst commited on
Commit
571fe08
1 Parent(s): b27e392

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -1,16 +1,16 @@
1
  ---
2
  license: apache-2.0
3
  inference: false
4
- tags: [green, llmware-rag, p3,ov]
5
  ---
6
 
7
- # bling-phi-3-ov
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
11
- **bling-phi-3-ov** is an OpenVino int4 quantized version of BLING Phi-3, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
- [**bling-phi-3**](https://huggingface.co/llmware/bling-phi-3) is a fact-based question-answering model, optimized for complex business documents.
14
 
15
  Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
16
 
@@ -20,13 +20,13 @@ Looking for AI PC solutions and demos, contact us at [llmware](https://www.llmwa
20
  ### Model Description
21
 
22
  - **Developed by:** llmware
23
- - **Model type:** phi3
24
- - **Parameters:** 3.8 billion
25
- - **Model Parent:** llmware/bling-phi-3
26
  - **Language(s) (NLP):** English
27
  - **License:** Apache 2.0
28
  - **Uses:** Fact-based question-answering
29
- - **RAG Benchmark Accuracy Score:** 99.5
30
  - **Quantization:** int4
31
 
32
 
 
1
  ---
2
  license: apache-2.0
3
  inference: false
4
+ tags: [green, llmware-rag, p1,ov]
5
  ---
6
 
7
+ # bling-qwen-500m-ov
8
 
9
  <!-- Provide a quick summary of what the model is/does. -->
10
 
11
+ **bling-qwen-500m-ov** is an OpenVino int4 quantized version of BLING Qwen 500m, providing a very fast, very small inference implementation, optimized for AI PCs using Intel GPU, CPU and NPU.
12
 
13
+ [**bling-qwen-500m**](https://huggingface.co/llmware/bling-qwen-500m) is a fact-based question-answering model, optimized for complex business documents.
14
 
15
  Get started right away with [OpenVino](https://github.com/openvinotoolkit/openvino)
16
 
 
20
  ### Model Description
21
 
22
  - **Developed by:** llmware
23
+ - **Model type:** qwen2
24
+ - **Parameters:** 0.5 billion
25
+ - **Model Parent:** llmware/bling-qwen-500m
26
  - **Language(s) (NLP):** English
27
  - **License:** Apache 2.0
28
  - **Uses:** Fact-based question-answering
29
+ - **RAG Benchmark Accuracy Score:** [80]
30
  - **Quantization:** int4
31
 
32