llmixer's picture
Added test inference from exllamav2, added gguf-py from llama.cpp
e47221b
raw
history blame
8.6 kB
from __future__ import annotations
from abc import ABC, ABCMeta, abstractmethod
import logging
from typing import Any, Callable
import numpy as np
from numpy.typing import DTypeLike
logger = logging.getLogger(__name__)
class LazyMeta(ABCMeta):
def __new__(cls, name: str, bases: tuple[type, ...], namespace: dict[str, Any], **kwargs):
def __getattr__(self, name: str) -> Any:
meta_attr = getattr(self._meta, name)
if callable(meta_attr):
return type(self)._wrap_fn(
(lambda s, *args, **kwargs: getattr(s, name)(*args, **kwargs)),
use_self=self,
)
elif isinstance(meta_attr, self._tensor_type):
# e.g. self.T with torch.Tensor should still be wrapped
return type(self)._wrap_fn(lambda s: getattr(s, name))(self)
else:
# no need to wrap non-tensor properties,
# and they likely don't depend on the actual contents of the tensor
return meta_attr
namespace["__getattr__"] = __getattr__
# need to make a builder for the wrapped wrapper to copy the name,
# or else it fails with very cryptic error messages,
# because somehow the same string would end up in every closures
def mk_wrap(op_name: str, *, meta_noop: bool = False):
# need to wrap the wrapper to get self
def wrapped_special_op(self, *args, **kwargs):
return type(self)._wrap_fn(
getattr(type(self)._tensor_type, op_name),
meta_noop=meta_noop,
)(self, *args, **kwargs)
return wrapped_special_op
# special methods bypass __getattr__, so they need to be added manually
# ref: https://docs.python.org/3/reference/datamodel.html#special-lookup
# NOTE: doing this from a metaclass is very convenient
# TODO: make this even more comprehensive
for binary_op in (
"lt", "le", "eq", "ne", "ge", "gt", "not"
"abs", "add", "and", "floordiv", "invert", "lshift", "mod", "mul", "matmul",
"neg", "or", "pos", "pow", "rshift", "sub", "truediv", "xor",
"iadd", "iand", "ifloordiv", "ilshift", "imod", "imul", "ior", "irshift", "isub", "ixor",
"radd", "rand", "rfloordiv", "rmul", "ror", "rpow", "rsub", "rtruediv", "rxor",
):
attr_name = f"__{binary_op}__"
# the result of these operators usually has the same shape and dtype as the input,
# so evaluation on the meta tensor can be skipped.
namespace[attr_name] = mk_wrap(attr_name, meta_noop=True)
for special_op in (
"getitem", "setitem", "len",
):
attr_name = f"__{special_op}__"
namespace[attr_name] = mk_wrap(attr_name, meta_noop=False)
return super().__new__(cls, name, bases, namespace, **kwargs)
# Tree of lazy tensors
class LazyBase(ABC, metaclass=LazyMeta):
_tensor_type: type
_meta: Any
_data: Any | None
_args: tuple
_kwargs: dict[str, Any]
_func: Callable[[Any], Any] | None
def __init__(self, *, meta: Any, data: Any | None = None, args: tuple = (), kwargs: dict[str, Any] | None = None, func: Callable[[Any], Any] | None = None):
super().__init__()
self._meta = meta
self._data = data
self._args = args
self._kwargs = kwargs if kwargs is not None else {}
self._func = func
assert self._func is not None or self._data is not None
def __init_subclass__(cls) -> None:
if "_tensor_type" not in cls.__dict__:
raise TypeError(f"property '_tensor_type' must be defined for {cls!r}")
return super().__init_subclass__()
@staticmethod
def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any:
# TODO: dict and set
if isinstance(o, (list, tuple)):
L = []
for item in o:
L.append(LazyBase._recurse_apply(item, fn))
if isinstance(o, tuple):
L = tuple(L)
return L
elif isinstance(o, LazyBase):
return fn(o)
else:
return o
@classmethod
def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike | tuple[DTypeLike, Callable[[tuple[int, ...]], tuple[int, ...]]] = False) -> Callable[[Any], Any]:
def wrapped_fn(*args, **kwargs):
if kwargs is None:
kwargs = {}
args = ((use_self,) if use_self is not None else ()) + args
meta_args = LazyBase._recurse_apply(args, lambda t: t._meta)
# TODO: maybe handle tensors in kwargs too
if isinstance(meta_noop, bool) and not meta_noop:
try:
res = fn(*meta_args, **kwargs)
except NotImplementedError:
# running some operations on PyTorch's Meta tensors can cause this exception
res = None
else:
# some operators don't need to actually run on the meta tensors
assert len(args) > 0
res = args[0]
assert isinstance(res, cls)
res = res._meta
# allow operations to override the dtype and shape
if meta_noop is not True:
if isinstance(meta_noop, tuple):
dtype, shape = meta_noop
assert callable(shape)
res = cls.meta_with_dtype_and_shape(dtype, shape(res.shape))
else:
res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
if isinstance(res, cls._tensor_type):
return cls(meta=cls.eager_to_meta(res), args=args, kwargs=kwargs, func=fn)
else:
del res # not needed
# non-tensor return likely relies on the contents of the args
# (e.g. the result of torch.equal)
eager_args = cls.to_eager(args)
return fn(*eager_args, **kwargs)
return wrapped_fn
@classmethod
def to_eager(cls, t: Any) -> Any:
def simple_to_eager(_t: LazyBase) -> Any:
if _t._data is not None:
return _t._data
# NOTE: there's a recursion limit in Python (usually 1000)
assert _t._func is not None
_t._args = cls._recurse_apply(_t._args, simple_to_eager)
_t._data = _t._func(*_t._args, **_t._kwargs)
# sanity check
assert _t._data is not None
assert _t._data.dtype == _t._meta.dtype
assert _t._data.shape == _t._meta.shape
return _t._data
# recurse into lists and/or tuples, keeping their structure
return cls._recurse_apply(t, simple_to_eager)
@classmethod
def eager_to_meta(cls, t: Any) -> Any:
return cls.meta_with_dtype_and_shape(t.dtype, t.shape)
# must be overridden, meta tensor init is backend-specific
@classmethod
@abstractmethod
def meta_with_dtype_and_shape(cls, dtype: Any, shape: Any) -> Any: pass
@classmethod
def from_eager(cls, t: Any) -> Any:
if type(t) is cls:
# already lazy
return t
elif isinstance(t, cls._tensor_type):
return cls(meta=cls.eager_to_meta(t), data=t)
else:
return TypeError(f"{type(t)!r} is not compatible with {cls._tensor_type!r}")
class LazyNumpyTensor(LazyBase):
_tensor_type = np.ndarray
shape: tuple[int, ...] # Makes the type checker happy in quants.py
@classmethod
def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: tuple[int, ...]) -> np.ndarray[Any, Any]:
# The initial idea was to use np.nan as the fill value,
# but non-float types like np.int16 can't use that.
# So zero it is.
cheat = np.zeros(1, dtype)
return np.lib.stride_tricks.as_strided(cheat, shape, (0 for _ in shape))
def astype(self, dtype, *args, **kwargs):
meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape)
full_args = (self, dtype,) + args
return type(self)(meta=meta, args=full_args, kwargs=kwargs, func=(lambda a, *args, **kwargs: a.astype(*args, **kwargs)))
def tofile(self, *args, **kwargs):
eager = LazyNumpyTensor.to_eager(self)
return eager.tofile(*args, **kwargs)
# TODO: __array_function__