Add chat template examples
Browse files
README.md
CHANGED
@@ -4,6 +4,9 @@ language:
|
|
4 |
pipeline_tag: image-text-to-text
|
5 |
inference: false
|
6 |
arxiv: 2312.00784
|
|
|
|
|
|
|
7 |
---
|
8 |
# VipLLaVA Model Card
|
9 |
|
@@ -55,10 +58,21 @@ import requests
|
|
55 |
model_id = "llava-hf/vip-llava-7b-hf"
|
56 |
pipe = pipeline("image-to-text", model=model_id)
|
57 |
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
|
58 |
-
|
59 |
image = Image.open(requests.get(url, stream=True).raw)
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
64 |
print(outputs)
|
@@ -76,12 +90,6 @@ import torch
|
|
76 |
from transformers import AutoProcessor, VipLlavaForConditionalGeneration
|
77 |
|
78 |
model_id = "llava-hf/vip-llava-7b-hf"
|
79 |
-
|
80 |
-
question = "What are these?"
|
81 |
-
prompt = f"A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.###Human: <image>\n{question}###Assistant:"
|
82 |
-
|
83 |
-
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
84 |
-
|
85 |
model = VipLlavaForConditionalGeneration.from_pretrained(
|
86 |
model_id,
|
87 |
torch_dtype=torch.float16,
|
@@ -91,6 +99,21 @@ model = VipLlavaForConditionalGeneration.from_pretrained(
|
|
91 |
processor = AutoProcessor.from_pretrained(model_id)
|
92 |
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
95 |
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
|
96 |
|
|
|
4 |
pipeline_tag: image-text-to-text
|
5 |
inference: false
|
6 |
arxiv: 2312.00784
|
7 |
+
tags:
|
8 |
+
- vision
|
9 |
+
- image-text-to-text
|
10 |
---
|
11 |
# VipLLaVA Model Card
|
12 |
|
|
|
58 |
model_id = "llava-hf/vip-llava-7b-hf"
|
59 |
pipe = pipeline("image-to-text", model=model_id)
|
60 |
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
|
|
|
61 |
image = Image.open(requests.get(url, stream=True).raw)
|
62 |
+
|
63 |
+
# Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
|
64 |
+
# Each value in "content" has to be a list of dicts with types ("text", "image")
|
65 |
+
conversation = [
|
66 |
+
{
|
67 |
+
|
68 |
+
"role": "user",
|
69 |
+
"content": [
|
70 |
+
{"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
|
71 |
+
{"type": "image"},
|
72 |
+
],
|
73 |
+
},
|
74 |
+
]
|
75 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
76 |
|
77 |
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
78 |
print(outputs)
|
|
|
90 |
from transformers import AutoProcessor, VipLlavaForConditionalGeneration
|
91 |
|
92 |
model_id = "llava-hf/vip-llava-7b-hf"
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
model = VipLlavaForConditionalGeneration.from_pretrained(
|
94 |
model_id,
|
95 |
torch_dtype=torch.float16,
|
|
|
99 |
processor = AutoProcessor.from_pretrained(model_id)
|
100 |
|
101 |
|
102 |
+
# Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
|
103 |
+
# Each value in "content" has to be a list of dicts with types ("text", "image")
|
104 |
+
conversation = [
|
105 |
+
{
|
106 |
+
|
107 |
+
"role": "user",
|
108 |
+
"content": [
|
109 |
+
{"type": "text", "text": "What are these?"},
|
110 |
+
{"type": "image"},
|
111 |
+
],
|
112 |
+
},
|
113 |
+
]
|
114 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
115 |
+
|
116 |
+
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
117 |
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
118 |
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
|
119 |
|