Commit
•
a9f1f5a
1
Parent(s):
086ffa3
Update README.md
Browse files
README.md
CHANGED
@@ -5,6 +5,9 @@ license: other
|
|
5 |
license_name: tongyi-qianwen-research
|
6 |
license_link: LICENSE
|
7 |
pipeline_tag: image-text-to-text
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
# LLaVA Interleave Model Card
|
@@ -35,6 +38,7 @@ The model supports multi-image and multi-prompt generation. Meaning that you can
|
|
35 |
|
36 |
Below we used [`"llava-hf/llava-interleave-qwen-0.5b-hf"`](https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf) checkpoint.
|
37 |
|
|
|
38 |
```python
|
39 |
from transformers import pipeline
|
40 |
from PIL import Image
|
@@ -42,10 +46,23 @@ import requests
|
|
42 |
|
43 |
model_id = "llava-hf/llava-interleave-qwen-7b-hf"
|
44 |
pipe = pipeline("image-to-text", model=model_id)
|
45 |
-
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
|
46 |
|
|
|
47 |
image = Image.open(requests.get(url, stream=True).raw)
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
51 |
print(outputs)
|
@@ -63,10 +80,6 @@ import torch
|
|
63 |
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
64 |
|
65 |
model_id = "llava-hf/llava-interleave-qwen-7b-hf"
|
66 |
-
|
67 |
-
prompt = "<|im_start|>user <image>\nWhat are these?|im_end|><|im_start|>assistant"
|
68 |
-
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
69 |
-
|
70 |
model = LlavaForConditionalGeneration.from_pretrained(
|
71 |
model_id,
|
72 |
torch_dtype=torch.float16,
|
@@ -75,7 +88,21 @@ model = LlavaForConditionalGeneration.from_pretrained(
|
|
75 |
|
76 |
processor = AutoProcessor.from_pretrained(model_id)
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
|
|
79 |
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
80 |
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
|
81 |
|
@@ -83,6 +110,7 @@ output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
|
83 |
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
84 |
```
|
85 |
|
|
|
86 |
When prompting with videos/3D/multi-view input, prompt like following:
|
87 |
|
88 |
```python
|
@@ -90,17 +118,47 @@ When prompting with videos/3D/multi-view input, prompt like following:
|
|
90 |
|
91 |
image_tokens = "<image>" * n
|
92 |
prompt = f"<|im_start|>user {image_tokens}\nWhat are these?|im_end|><|im_start|>assistant"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
```
|
94 |
|
95 |
When prompting with interleaved images and videos, prompt like following:
|
96 |
|
97 |
```python
|
98 |
# two interleaved images
|
99 |
-
prompt = "<|im_start|>user <image><image>\nWhat
|
100 |
|
101 |
# two interleaved videos, if you downsampled n frames in total from both videos
|
102 |
image_tokens = "<image>" * n
|
103 |
prompt = f"<|im_start|>user {image_tokens}\nWhat are these?|im_end|><|im_start|>assistant"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
```
|
105 |
|
106 |
### Model optimization
|
|
|
5 |
license_name: tongyi-qianwen-research
|
6 |
license_link: LICENSE
|
7 |
pipeline_tag: image-text-to-text
|
8 |
+
tags:
|
9 |
+
- vision
|
10 |
+
- image-text-to-text
|
11 |
---
|
12 |
|
13 |
# LLaVA Interleave Model Card
|
|
|
38 |
|
39 |
Below we used [`"llava-hf/llava-interleave-qwen-0.5b-hf"`](https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf) checkpoint.
|
40 |
|
41 |
+
|
42 |
```python
|
43 |
from transformers import pipeline
|
44 |
from PIL import Image
|
|
|
46 |
|
47 |
model_id = "llava-hf/llava-interleave-qwen-7b-hf"
|
48 |
pipe = pipeline("image-to-text", model=model_id)
|
|
|
49 |
|
50 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
|
51 |
image = Image.open(requests.get(url, stream=True).raw)
|
52 |
+
|
53 |
+
# Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
|
54 |
+
# Each value in "content" has to be a list of dicts with types ("text", "image")
|
55 |
+
conversation = [
|
56 |
+
{
|
57 |
+
|
58 |
+
"role": "user",
|
59 |
+
"content": [
|
60 |
+
{"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
|
61 |
+
{"type": "image"},
|
62 |
+
],
|
63 |
+
},
|
64 |
+
]
|
65 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
66 |
|
67 |
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
|
68 |
print(outputs)
|
|
|
80 |
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
81 |
|
82 |
model_id = "llava-hf/llava-interleave-qwen-7b-hf"
|
|
|
|
|
|
|
|
|
83 |
model = LlavaForConditionalGeneration.from_pretrained(
|
84 |
model_id,
|
85 |
torch_dtype=torch.float16,
|
|
|
88 |
|
89 |
processor = AutoProcessor.from_pretrained(model_id)
|
90 |
|
91 |
+
# Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
|
92 |
+
# Each value in "content" has to be a list of dicts with types ("text", "image")
|
93 |
+
conversation = [
|
94 |
+
{
|
95 |
+
|
96 |
+
"role": "user",
|
97 |
+
"content": [
|
98 |
+
{"type": "text", "text": "What are these?"},
|
99 |
+
{"type": "image"},
|
100 |
+
],
|
101 |
+
},
|
102 |
+
]
|
103 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
104 |
|
105 |
+
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
106 |
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
107 |
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
|
108 |
|
|
|
110 |
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
111 |
```
|
112 |
|
113 |
+
|
114 |
When prompting with videos/3D/multi-view input, prompt like following:
|
115 |
|
116 |
```python
|
|
|
118 |
|
119 |
image_tokens = "<image>" * n
|
120 |
prompt = f"<|im_start|>user {image_tokens}\nWhat are these?|im_end|><|im_start|>assistant"
|
121 |
+
|
122 |
+
# With chat template if you sampled 6 frames you have to have 8 images in one conversation turn
|
123 |
+
conversation = [
|
124 |
+
{
|
125 |
+
|
126 |
+
"role": "user",
|
127 |
+
"content": [
|
128 |
+
{"type": "text", "text": "What are these?"},
|
129 |
+
{"type": "image"},
|
130 |
+
{"type": "image"},
|
131 |
+
{"type": "image"},
|
132 |
+
{"type": "image"},
|
133 |
+
{"type": "image"},
|
134 |
+
],
|
135 |
+
},
|
136 |
+
]
|
137 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
138 |
```
|
139 |
|
140 |
When prompting with interleaved images and videos, prompt like following:
|
141 |
|
142 |
```python
|
143 |
# two interleaved images
|
144 |
+
prompt = "<|im_start|>user <image><image>\nWhat is the difference between these two images?|im_end|><|im_start|>assistant"
|
145 |
|
146 |
# two interleaved videos, if you downsampled n frames in total from both videos
|
147 |
image_tokens = "<image>" * n
|
148 |
prompt = f"<|im_start|>user {image_tokens}\nWhat are these?|im_end|><|im_start|>assistant"
|
149 |
+
|
150 |
+
# chat template in interleaved format work same as in sampling videos. Just pass in as many images you want for a prompt
|
151 |
+
conversation = [
|
152 |
+
{
|
153 |
+
|
154 |
+
"role": "user",
|
155 |
+
"content": [
|
156 |
+
{"type": "text", "text": "What is the difference between these two images?"},
|
157 |
+
{"type": "image"},
|
158 |
+
{"type": "image"},
|
159 |
+
],
|
160 |
+
},
|
161 |
+
]
|
162 |
```
|
163 |
|
164 |
### Model optimization
|