navsim_ours / navsim /evaluate /pdm_score.py
lkllkl's picture
Upload folder using huggingface_hub
da2e2ac verified
import time
from typing import List
import numpy as np
import numpy.typing as npt
import yaml
from nuplan.common.actor_state.ego_state import EgoState
from nuplan.common.actor_state.state_representation import StateSE2, TimePoint
from nuplan.common.geometry.convert import relative_to_absolute_poses
from nuplan.planning.simulation.planner.ml_planner.transform_utils import (
_get_fixed_timesteps,
_se2_vel_acc_to_ego_state,
)
from nuplan.planning.simulation.trajectory.interpolated_trajectory import InterpolatedTrajectory
from nuplan.planning.simulation.trajectory.trajectory_sampling import TrajectorySampling
from navsim.common.dataclasses import PDMResults, Trajectory
from navsim.planning.metric_caching.metric_cache import MetricCache
from navsim.planning.simulation.planner.pdm_planner.scoring.pdm_scorer import (
PDMScorer,
)
from navsim.planning.simulation.planner.pdm_planner.scoring.pdm_scorer_progress import PDMScorerProgress
from navsim.planning.simulation.planner.pdm_planner.simulation.pdm_simulator import (
PDMSimulator,
)
from navsim.planning.simulation.planner.pdm_planner.utils.pdm_array_representation import (
ego_states_to_state_array,
)
from navsim.planning.simulation.planner.pdm_planner.utils.pdm_enums import (
MultiMetricIndex,
WeightedMetricIndex,
)
def transform_trajectory(
pred_trajectory: Trajectory, initial_ego_state: EgoState
) -> InterpolatedTrajectory:
"""
Transform trajectory in global frame and return as InterpolatedTrajectory
:param pred_trajectory: trajectory dataclass in ego frame
:param initial_ego_state: nuPlan's ego state object
:return: nuPlan's InterpolatedTrajectory
"""
future_sampling = pred_trajectory.trajectory_sampling
timesteps = _get_fixed_timesteps(
initial_ego_state, future_sampling.time_horizon, future_sampling.interval_length
)
relative_poses = np.array(pred_trajectory.poses, dtype=np.float64)
relative_states = [StateSE2.deserialize(pose) for pose in relative_poses]
absolute_states = relative_to_absolute_poses(initial_ego_state.rear_axle, relative_states)
# NOTE: velocity and acceleration ignored by LQR + bicycle model
agent_states = [
_se2_vel_acc_to_ego_state(
state,
[0.0, 0.0],
[0.0, 0.0],
timestep,
initial_ego_state.car_footprint.vehicle_parameters,
)
for state, timestep in zip(absolute_states, timesteps)
]
# NOTE: maybe make addition of initial_ego_state optional
return InterpolatedTrajectory([initial_ego_state] + agent_states)
def get_trajectory_as_array(
trajectory: InterpolatedTrajectory,
future_sampling: TrajectorySampling,
start_time: TimePoint,
) -> npt.NDArray[np.float64]:
"""
Interpolated trajectory and return as numpy array
:param trajectory: nuPlan's InterpolatedTrajectory object
:param future_sampling: Sampling parameters for interpolation
:param start_time: TimePoint object of start
:return: Array of interpolated trajectory states.
"""
times_s = np.arange(
0.0,
future_sampling.time_horizon + future_sampling.interval_length,
future_sampling.interval_length,
)
times_s += start_time.time_s
times_us = [int(time_s * 1e6) for time_s in times_s]
times_us = np.clip(times_us, trajectory.start_time.time_us, trajectory.end_time.time_us)
time_points = [TimePoint(time_us) for time_us in times_us]
trajectory_ego_states: List[EgoState] = trajectory.get_state_at_times(time_points)
return ego_states_to_state_array(trajectory_ego_states)
def pdm_score(
metric_cache: MetricCache,
model_trajectory: Trajectory,
future_sampling: TrajectorySampling,
simulator: PDMSimulator,
scorer: PDMScorer,
use_pdm_closed: bool = False
) -> PDMResults:
"""
Runs PDM-Score and saves results in dataclass.
:param metric_cache: Metric cache dataclass
:param model_trajectory: Predicted trajectory in ego frame.
:return: Dataclass of PDM-Subscores.
"""
initial_ego_state = metric_cache.ego_state
pdm_trajectory = metric_cache.trajectory
pred_trajectory = transform_trajectory(model_trajectory, initial_ego_state)
pdm_states, pred_states = (
get_trajectory_as_array(pdm_trajectory, future_sampling, initial_ego_state.time_point),
get_trajectory_as_array(pred_trajectory, future_sampling, initial_ego_state.time_point),
)
trajectory_states = np.concatenate([pdm_states[None, ...], pred_states[None, ...]], axis=0)
simulated_states = simulator.simulate_proposals(trajectory_states, initial_ego_state)
scores = scorer.score_proposals(
simulated_states,
metric_cache.observation,
metric_cache.centerline,
metric_cache.route_lane_ids,
metric_cache.drivable_area_map,
)
# TODO: Refactor & add / modify existing metrics.
pred_idx = 0 if use_pdm_closed else 1
no_at_fault_collisions = scorer._multi_metrics[MultiMetricIndex.NO_COLLISION, pred_idx]
drivable_area_compliance = scorer._multi_metrics[MultiMetricIndex.DRIVABLE_AREA, pred_idx]
driving_direction_compliance = scorer._multi_metrics[
MultiMetricIndex.DRIVING_DIRECTION, pred_idx
]
ego_progress = scorer._weighted_metrics[WeightedMetricIndex.PROGRESS, pred_idx]
time_to_collision_within_bound = scorer._weighted_metrics[WeightedMetricIndex.TTC, pred_idx]
comfort = scorer._weighted_metrics[WeightedMetricIndex.COMFORTABLE, pred_idx]
score = scores[pred_idx]
return PDMResults(
no_at_fault_collisions,
drivable_area_compliance,
driving_direction_compliance,
ego_progress,
time_to_collision_within_bound,
comfort,
score,
)
def pdm_score_vocab(
metric_cache: MetricCache,
vocab_trajectory: npt.NDArray,
future_sampling: TrajectorySampling,
simulator: PDMSimulator,
scorer: PDMScorer,
) -> npt.NDArray:
"""
Runs PDM-Score and saves results in dataclass.
:param metric_cache: Metric cache dataclass
:param vocab_trajectory: Predicted trajectory in ego frame.
:return: Dataclass of PDM-Subscores.
"""
initial_ego_state = metric_cache.ego_state
# a = time.time()
transformed_ones = [transform_trajectory(Trajectory(pose, TrajectorySampling(
time_horizon=4, interval_length=0.1
)), initial_ego_state) for pose in vocab_trajectory]
# b = time.time()
vocab_states = [
get_trajectory_as_array(
transformed,
future_sampling,
initial_ego_state.time_point
)[None] for transformed in transformed_ones
]
# c = time.time()
trajectory_states = np.concatenate(vocab_states, axis=0)
simulated_states = simulator.simulate_proposals(trajectory_states, initial_ego_state)
# d = time.time()
scores = scorer.score_proposals(
simulated_states,
metric_cache.observation,
metric_cache.centerline,
metric_cache.route_lane_ids,
metric_cache.drivable_area_map,
)
# e = time.time()
# print(f'transform: {b-a}, get_trajectory_as_array: {c-b}, simulate: {d-c}, score: {e-d}')
return scores
def pdm_score_full(
metric_cache: MetricCache,
vocab_trajectory: npt.NDArray,
future_sampling: TrajectorySampling,
simulator: PDMSimulator,
scorer: PDMScorerProgress,
) -> npt.NDArray:
"""
Runs PDM-Score and saves results in dataclass.
:param metric_cache: Metric cache dataclass
:param vocab_trajectory: Predicted trajectory in ego frame.
:return: Dataclass of PDM-Subscores.
"""
initial_ego_state = metric_cache.ego_state
transformed_ones = [transform_trajectory(Trajectory(pose, TrajectorySampling(
time_horizon=4, interval_length=0.1
)), initial_ego_state) for pose in vocab_trajectory]
pdm_states = get_trajectory_as_array(
metric_cache.trajectory,
future_sampling,
initial_ego_state.time_point
)[None]
# pdm, vocab-0, vocab-1, ..., vocab-n
all_states = [pdm_states]
all_states += [
get_trajectory_as_array(
transformed,
future_sampling,
initial_ego_state.time_point
)[None] for transformed in transformed_ones
]
all_states = np.concatenate(all_states, axis=0)
simulated_states = simulator.simulate_proposals(all_states, initial_ego_state)
scores = scorer.score_proposals(
simulated_states,
metric_cache.observation,
metric_cache.centerline,
metric_cache.route_lane_ids,
metric_cache.drivable_area_map,
)
return {
'noc': scorer._multi_metrics[MultiMetricIndex.NO_COLLISION].astype(np.float16)[1:],
'da': scorer._multi_metrics[MultiMetricIndex.DRIVABLE_AREA].astype(np.bool)[1:],
'dd': scorer._multi_metrics[MultiMetricIndex.DRIVING_DIRECTION].astype(np.float16)[1:],
'ttc': scorer._weighted_metrics[WeightedMetricIndex.TTC].astype(np.bool)[1:],
'progress': scorer._weighted_metrics[WeightedMetricIndex.PROGRESS].astype(np.float16)[1:],
'comfort': scorer._weighted_metrics[WeightedMetricIndex.COMFORTABLE].astype(np.bool)[1:],
'total': scores.astype(np.float16)[1:]
}