agent="vadv2_4096_pdm_rel_extra" | |
# cache="navtrain_vadv2_4f_cache" | |
cache="navtrain_vadv2+map_img256x1024_cache" | |
bs=32 | |
lr=0.0001 | |
ngc batch run \ | |
-in dgx1v.32g.8.norm \ | |
--ace nv-us-west-2 \ | |
--label _wl___computer_vision \ | |
-n ml-model.lzx_train._wl___computer_vision \ | |
--result /result \ | |
-i nvcr.io/nvidian/swaiinf/lzx-navsim \ | |
--workspace q-2TlPKESo62ktTxOc8rYg:/zhenxinl_nuplan \ | |
--port 6007 \ | |
--commandline " | |
git pull; | |
python \${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/run_training.py \ | |
agent=$agent \ | |
experiment_name=${agent}_ckpt \ | |
cache_path=\${NAVSIM_EXP_ROOT}/$cache \ | |
agent.config.ckpt_path=${agent}_ckpt \ | |
split=trainval \ | |
dataloader.params.batch_size=$bs \ | |
agent.lr=$lr \ | |
scene_filter=navtrain" |