agent="hydra_pe" | |
cache="null" | |
bs=32 | |
lr=0.0002 | |
epoch=20 | |
config="competition_training" | |
dir=${agent}_lr2_ckpt | |
ngc batch run \ | |
-in dgx1v.32g.8.norm \ | |
--ace nv-us-west-2 \ | |
--label _wl___computer_vision \ | |
-n ml-model.lkl_train._wl___computer_vision \ | |
--result /result \ | |
-i nvcr.io/nvidian/swaiinf/lzx-navsim \ | |
--workspace q-2TlPKESo62ktTxOc8rYg:/zhenxinl_nuplan \ | |
--port 6007 \ | |
--commandline " | |
git pull; | |
pip install --upgrade diffusers[torch]; | |
python \${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/run_training.py \ | |
--config-name $config \ | |
agent=$agent \ | |
experiment_name=$dir \ | |
agent.config.ckpt_path=$dir \ | |
+agent.config.backbone_wd=$wd \ | |
agent.lr=$lr \ | |
cache_path=$cache \ | |
dataloader.params.batch_size=$bs \ | |
~trainer.params.strategy \ | |
trainer.params.max_epochs=$epoch \ | |
split=trainval \ | |
scene_filter=navtrain" |