agent="hydra_offset" | |
bs=8 | |
lr=0.0002 | |
cache=null | |
resume="epoch09.ckpt" | |
config="competition_training" | |
epoch=20 | |
replicas=8 | |
dir=${agent}_vov_fixedpading_bs${bs}x${replicas}_ckpt | |
ngc batch run \ | |
-in dgx1v.32g.8.norm \ | |
--ace nv-us-west-2 \ | |
--label _wl___computer_vision \ | |
-n ml-model.lkl_train._wl___computer_vision \ | |
--result /result \ | |
-i nvcr.io/nvidian/swaiinf/lzx-navsim \ | |
--workspace q-2TlPKESo62ktTxOc8rYg:/zhenxinl_nuplan \ | |
--port 6007 \ | |
--array-type "MPI" \ | |
--replicas $replicas \ | |
--total-runtime "4D" \ | |
--commandline " | |
mpirun --allow-run-as-root -np $replicas -npernode 1 bash -c ' | |
git pull; | |
pip install --upgrade diffusers[torch]; | |
MASTER_PORT=29500 MASTER_ADDR=launcher-svc-\${NGC_JOB_ID} WORLD_SIZE=\${NGC_ARRAY_SIZE} NODE_RANK=\${NGC_ARRAY_INDEX} \ | |
python \${NAVSIM_DEVKIT_ROOT}/navsim/planning/script/run_training.py \ | |
--config-name $config \ | |
agent=$agent \ | |
+resume_ckpt_path=\${NAVSIM_EXP_ROOT}/$dir/$resume \ | |
trainer.params.num_nodes=$replicas \ | |
trainer.params.max_epochs=$epoch \ | |
~trainer.params.strategy \ | |
dataloader.params.batch_size=$bs \ | |
experiment_name=$dir \ | |
cache_path=$cache \ | |
agent.config.ckpt_path=$dir \ | |
agent.lr=$lr \ | |
split=trainval \ | |
scene_filter=navtrain; | |
' | |
" |