|
import gradio as gr |
|
|
|
from io import BytesIO |
|
import requests |
|
import PIL |
|
from PIL import Image |
|
import numpy as np |
|
import os |
|
import uuid |
|
import torch |
|
from torch import autocast |
|
import cv2 |
|
from matplotlib import pyplot as plt |
|
from torchvision import transforms |
|
from diffusers import DiffusionPipeline |
|
from diffusers.utils import torch_device |
|
pipe = DiffusionPipeline.from_pretrained( |
|
"Fantasy-Studio/Paint-by-Example", |
|
torch_dtype=torch.float16, |
|
) |
|
pipe = pipe.to("cuda") |
|
|
|
from share_btn import community_icon_html, loading_icon_html, share_js |
|
|
|
def read_content(file_path: str) -> str: |
|
"""read the content of target file |
|
""" |
|
with open(file_path, 'r', encoding='utf-8') as f: |
|
content = f.read() |
|
|
|
return content |
|
|
|
def predict(dict, reference, scale, seed, step): |
|
width,height=dict["image"].size |
|
if width<height: |
|
factor=width/512.0 |
|
width=512 |
|
height=int((height/factor)/8.0)*8 |
|
|
|
else: |
|
factor=height/512.0 |
|
height=512 |
|
width=int((width/factor)/8.0)*8 |
|
init_image = dict["image"].convert("RGB").resize((width,height)) |
|
mask = dict["mask"].convert("RGB").resize((width,height)) |
|
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None |
|
output = pipe( |
|
image=init_image, |
|
mask_image=mask, |
|
example_image=reference, |
|
generator=generator, |
|
guidance_scale=scale, |
|
num_inference_steps=step, |
|
).images[0] |
|
return output, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) |
|
|
|
|
|
css = ''' |
|
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem} |
|
#image_upload{min-height:400px} |
|
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} |
|
#mask_radio .gr-form{background:transparent; border: none} |
|
#word_mask{margin-top: .75em !important} |
|
#word_mask textarea:disabled{opacity: 0.3} |
|
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} |
|
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} |
|
.dark .footer {border-color: #303030} |
|
.dark .footer>p {background: #0b0f19} |
|
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} |
|
#image_upload .touch-none{display: flex} |
|
@keyframes spin { |
|
from { |
|
transform: rotate(0deg); |
|
} |
|
to { |
|
transform: rotate(360deg); |
|
} |
|
} |
|
#share-btn-container { |
|
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; |
|
} |
|
#share-btn { |
|
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; |
|
} |
|
#share-btn * { |
|
all: unset; |
|
} |
|
#share-btn-container div:nth-child(-n+2){ |
|
width: auto !important; |
|
min-height: 0px !important; |
|
} |
|
#share-btn-container .wrap { |
|
display: none !important; |
|
} |
|
''' |
|
example={} |
|
ref_dir='examples/reference' |
|
image_dir='examples/image' |
|
ref_list=[os.path.join(ref_dir,file) for file in os.listdir(ref_dir)] |
|
ref_list.sort() |
|
image_list=[os.path.join(image_dir,file) for file in os.listdir(image_dir)] |
|
image_list.sort() |
|
|
|
|
|
image_blocks = gr.Blocks(css=css) |
|
with image_blocks as demo: |
|
gr.HTML(read_content("header.html")) |
|
with gr.Group(): |
|
with gr.Box(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Source Image") |
|
reference = gr.Image(source='upload', elem_id="image_upload", type="pil", label="Reference Image") |
|
|
|
with gr.Column(): |
|
image_out = gr.Image(label="Output", elem_id="output-img").style(height=400) |
|
guidance = gr.Slider(label="Guidance scale", value=5, maximum=15,interactive=True) |
|
steps = gr.Slider(label="Steps", value=50, minimum=2, maximum=75, step=1,interactive=True) |
|
|
|
seed = gr.Slider(0, 10000, label='Seed (0 = random)', value=0, step=1) |
|
|
|
with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): |
|
btn = gr.Button("Paint!").style( |
|
margin=False, |
|
rounded=(False, True, True, False), |
|
full_width=True, |
|
) |
|
with gr.Group(elem_id="share-btn-container"): |
|
community_icon = gr.HTML(community_icon_html, visible=True) |
|
loading_icon = gr.HTML(loading_icon_html, visible=True) |
|
share_button = gr.Button("Share to community", elem_id="share-btn", visible=True) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
gr.Examples(image_list, inputs=[image],label="Examples - Source Image",examples_per_page=12) |
|
with gr.Column(): |
|
gr.Examples(ref_list, inputs=[reference],label="Examples - Reference Image",examples_per_page=12) |
|
|
|
btn.click(fn=predict, inputs=[image, reference, guidance, seed, steps], outputs=[image_out, community_icon, loading_icon, share_button]) |
|
share_button.click(None, [], [], _js=share_js) |
|
|
|
|
|
image_blocks.launch(server_name='0.0.0.0') |
|
|