|
from typing import Dict, List, Any |
|
from transformers import pipeline |
|
import holidays |
|
import sys |
|
import os |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.pipeline = pipeline("text-classification", model=path) |
|
self.holidays = holidays.US() |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str`) |
|
date (:obj: `str`) |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
os.system('echo $PWD') |
|
os.system('python --version') |
|
os.system('python3 --version') |
|
os.system('ls') |
|
os.system('ls huggingface_inference_toolkit') |
|
os.system('ps -ef') |
|
os.system('uname -a') |
|
os.system('cat webservice_starlette.py') |
|
|
|
|
|
inputs = data.pop("inputs", data) |
|
|
|
date = data.pop("date", None) |
|
|
|
|
|
if date is not None and date in self.holidays: |
|
return [{"label": "happy", "score": 1}] |
|
|
|
|
|
prediction = self.pipeline(inputs) |
|
return prediction |
|
|